lkml.org 
[lkml]   [2016]   [Feb]   [25]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH 1/1] mm: thp: Redefine default THP defrag behaviour disable it by default
Date
This patch only makes sense on mmotm because it's heavily relying on an
existing swapping-related fix and indirectly relying on the kcompactd
patches. Even though the kernel says "4.4.0", the swapping and kcompactd
patches have been cherry-picked from mmotm for the purposes of testing.

THP defrag is enabled by default to direct reclaim/compact but not wake
kswapd in the event of a THP allocation failure. The problem is that THP
allocation requests potentially enter reclaim/compaction. This potentially
incurs a severe stall that is not guaranteed to be offset by reduced TLB
misses. While there has been considerable effort to reduce the impact
of reclaim/compaction, it is still a high cost and workloads that should
fit in memory fail to do so. Specifically, a simple anon/file streaming
workload will enter direct reclaim on NUMA at least even though the working
set size is 80% of RAM. It's been years and it's time to throw in the towel.

First, this patch redefines what THP defrag means;

o GFP_TRANSHUGE by default will neither reclaim/compact nor wake kswapd
o For faults, defrag will not direct/reclaim but will wake kswapd
o For khugepaged, defrag will enter direct/reclaim but not wake kswapd

This means that a THP fault will no longer stall but may incur
reclaim/compaction via kswapd reclaiming and kcompactd compacting. This
is potentially destructive so the patch disables THP defrag by default.
THP defrag for khugepaged remains enabled and will enter direct/reclaim
but no wakeup kswapd or kcompactd.

After this patch a THP allocation failure will quickly fallback and rely
on khugepaged to recover the situation at some time in the future. In
some cases, this will reduce THP usage but the benefit of THP is hard to
measure and not a universal win where as a stall to reclaim/compaction is
definitely measurable and can be painful.

The first test for this is using "usemem" to read a large file and write
a large anonymous mapping (to avoid the zero page) multiple times. The
total size of the mappings is 80% of RAM and the benchmark simply measures
how long it takes to complete. It uses multiple threads to see if that
is a factor. On UMA, the performance is almost identical so is not reported
but on NUMA, we see this

usemem
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Amean System-1 102.86 ( 0.00%) 46.81 ( 54.50%)
Amean System-4 37.85 ( 0.00%) 34.02 ( 10.12%)
Amean System-7 48.12 ( 0.00%) 46.89 ( 2.56%)
Amean System-12 51.98 ( 0.00%) 56.96 ( -9.57%)
Amean System-21 80.16 ( 0.00%) 79.05 ( 1.39%)
Amean System-30 110.71 ( 0.00%) 107.17 ( 3.20%)
Amean System-48 127.98 ( 0.00%) 124.83 ( 2.46%)
Amean Elapsd-1 185.84 ( 0.00%) 105.51 ( 43.23%)
Amean Elapsd-4 26.19 ( 0.00%) 25.58 ( 2.33%)
Amean Elapsd-7 21.65 ( 0.00%) 21.62 ( 0.16%)
Amean Elapsd-12 18.58 ( 0.00%) 17.94 ( 3.43%)
Amean Elapsd-21 17.53 ( 0.00%) 16.60 ( 5.33%)
Amean Elapsd-30 17.45 ( 0.00%) 17.13 ( 1.84%)
Amean Elapsd-48 15.40 ( 0.00%) 15.27 ( 0.82%)

For a single thread, the benchmark completes 43.23% faster with
this patch applied with smaller benefits as the thread increases.
Similar, notice the large reduction in most cases in system CPU
usage. The overall CPU time is

4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
User 10357.65 10438.33
System 3988.88 3543.94
Elapsed 2203.01 1634.41

Which is substantial. Now, the reclaim figures

4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 128458477 278352931
Major Faults 2174976 225
Swap Ins 16904701 0
Swap Outs 17359627 0
Allocation stalls 43611 0
DMA allocs 0 0
DMA32 allocs 19832646 19448017
Normal allocs 614488453 580941839
Movable allocs 0 0
Direct pages scanned 24163800 0
Kswapd pages scanned 0 0
Kswapd pages reclaimed 0 0
Direct pages reclaimed 20691346 0
Compaction stalls 42263 0
Compaction success 938 0
Compaction failures 41325 0

This patch eliminates almost all swapping and direct reclaim activity. There
is still overhead but it's from NUMA balancing which does not identify that
it's pointless trying to do anything with this workload.

I also tried the thpscale benchmark which forces a corner case where compaction
can be used heavily and measures the latency of whether base or huge pages were
used

thpscale Fault Latencies
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Amean fault-base-1 5288.84 ( 0.00%) 2817.12 ( 46.73%)
Amean fault-base-3 6365.53 ( 0.00%) 3499.11 ( 45.03%)
Amean fault-base-5 6526.19 ( 0.00%) 4363.06 ( 33.15%)
Amean fault-base-7 7142.25 ( 0.00%) 4858.08 ( 31.98%)
Amean fault-base-12 13827.64 ( 0.00%) 10292.11 ( 25.57%)
Amean fault-base-18 18235.07 ( 0.00%) 13788.84 ( 24.38%)
Amean fault-base-24 21597.80 ( 0.00%) 24388.03 (-12.92%)
Amean fault-base-30 26754.15 ( 0.00%) 19700.55 ( 26.36%)
Amean fault-base-32 26784.94 ( 0.00%) 19513.57 ( 27.15%)
Amean fault-huge-1 4223.96 ( 0.00%) 2178.57 ( 48.42%)
Amean fault-huge-3 2194.77 ( 0.00%) 2149.74 ( 2.05%)
Amean fault-huge-5 2569.60 ( 0.00%) 2346.95 ( 8.66%)
Amean fault-huge-7 3612.69 ( 0.00%) 2997.70 ( 17.02%)
Amean fault-huge-12 3301.75 ( 0.00%) 6727.02 (-103.74%)
Amean fault-huge-18 6696.47 ( 0.00%) 6685.72 ( 0.16%)
Amean fault-huge-24 8000.72 ( 0.00%) 9311.43 (-16.38%)
Amean fault-huge-30 13305.55 ( 0.00%) 9750.45 ( 26.72%)
Amean fault-huge-32 9981.71 ( 0.00%) 10316.06 ( -3.35%)

The average time to fault pages is substantially reduced in the
majority of caseds but with the obvious caveat that fewer THPs
are actually used in this adverse workload

4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Percentage huge-1 0.71 ( 0.00%) 14.04 (1865.22%)
Percentage huge-3 10.77 ( 0.00%) 33.05 (206.85%)
Percentage huge-5 60.39 ( 0.00%) 38.51 (-36.23%)
Percentage huge-7 45.97 ( 0.00%) 34.57 (-24.79%)
Percentage huge-12 68.12 ( 0.00%) 40.07 (-41.17%)
Percentage huge-18 64.93 ( 0.00%) 47.82 (-26.35%)
Percentage huge-24 62.69 ( 0.00%) 44.23 (-29.44%)
Percentage huge-30 43.49 ( 0.00%) 55.38 ( 27.34%)
Percentage huge-32 50.72 ( 0.00%) 51.90 ( 2.35%)

4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 37429143 47564000
Major Faults 1916 1558
Swap Ins 1466 1079
Swap Outs 2936863 149626
Allocation stalls 62510 3
DMA allocs 0 0
DMA32 allocs 6566458 6401314
Normal allocs 216361697 216538171
Movable allocs 0 0
Direct pages scanned 25977580 17998
Kswapd pages scanned 0 3638931
Kswapd pages reclaimed 0 207236
Direct pages reclaimed 8833714 88
Compaction stalls 103349 5
Compaction success 270 4
Compaction failures 103079 1

Note again that while this does swap as it's an aggressive workload,
the direct relcim activity and allocation stalls is substantially
reduced. There is some kswapd activity but ftrace showed that the
kswapd activity was due to normal wakeups from 4K pages being
allocated. Compaction-related stalls and activity are almost
eliminated.

I also tried the stutter benchmark. For this, I do not have figures for
NUMA but it's something that does impact UMA so I'll report what is available

stutter
4.4.0 4.4.0
kcompactd-v1r1 nodefrag-v1r3
Min mmap 7.3571 ( 0.00%) 7.3438 ( 0.18%)
1st-qrtle mmap 7.5278 ( 0.00%) 17.9200 (-138.05%)
2nd-qrtle mmap 7.6818 ( 0.00%) 21.6055 (-181.25%)
3rd-qrtle mmap 11.0889 ( 0.00%) 21.8881 (-97.39%)
Max-90% mmap 27.8978 ( 0.00%) 22.1632 ( 20.56%)
Max-93% mmap 28.3202 ( 0.00%) 22.3044 ( 21.24%)
Max-95% mmap 28.5600 ( 0.00%) 22.4580 ( 21.37%)
Max-99% mmap 29.6032 ( 0.00%) 25.5216 ( 13.79%)
Max mmap 4109.7289 ( 0.00%) 4813.9832 (-17.14%)
Mean mmap 12.4474 ( 0.00%) 19.3027 (-55.07%)

This benchmark is trying to fault an anonymous mapping while there is
a heavy IO load -- a scenario that desktop users used to complain about
frequently. This shows a mix because the ideal case of mapping with THP
is not hit as often. However, note that 99% of the mappings complete
13.79% faster. The CPU usage here is particularly interesting

4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
User 67.50 0.99
System 1327.88 91.30
Elapsed 2079.00 2128.98

And once again we look at the reclaim figures

4.4.0 4.4.0
kcompactd-v1r1nodefrag-v1r3
Minor Faults 335241922 1314582827
Major Faults 715 819
Swap Ins 0 0
Swap Outs 0 0
Allocation stalls 532723 0
DMA allocs 0 0
DMA32 allocs 1822364341 1177950222
Normal allocs 1815640808 1517844854
Movable allocs 0 0
Direct pages scanned 21892772 0
Kswapd pages scanned 20015890 41879484
Kswapd pages reclaimed 19961986 41822072
Direct pages reclaimed 21892741 0
Compaction stalls 1065755 0
Compaction success 514 0
Compaction failures 1065241 0

Allocation stalls and all direct reclaim activity is eliminated as well
as compaction-related stalls.

THP gives impressive gains in some cases but only if they are quickly
available. We're not going to reach the point where they are completely
free so lets take the costs out of the fast paths finally and defer the
cost to kswapd, kcompactd and khugepaged where it belongs.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
---
include/linux/gfp.h | 2 +-
mm/huge_memory.c | 26 ++++++++++++++++----------
2 files changed, 17 insertions(+), 11 deletions(-)

diff --git a/include/linux/gfp.h b/include/linux/gfp.h
index 8942af0813e3..e4a0287e5d0b 100644
--- a/include/linux/gfp.h
+++ b/include/linux/gfp.h
@@ -248,7 +248,7 @@ struct vm_area_struct;
#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
#define GFP_TRANSHUGE ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN) & \
- ~__GFP_KSWAPD_RECLAIM)
+ ~__GFP_RECLAIM)

/* Convert GFP flags to their corresponding migrate type */
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index 62fe06bb7d04..2708e9766e37 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -46,7 +46,6 @@ unsigned long transparent_hugepage_flags __read_mostly =
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
- (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);

@@ -784,9 +783,17 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
return 0;
}

-static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
+/* Defrag for allocation during fault will wake kswapd if necessary */
+static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
- return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
+ bool defrag = transparent_hugepage_defrag(vma);
+ return GFP_TRANSHUGE | (defrag ? __GFP_KSWAPD_RECLAIM : 0);
+}
+
+/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
+static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
+{
+ return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
}

/* Caller must hold page table lock. */
@@ -859,7 +866,7 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
}
return ret;
}
- gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
+ gfp = alloc_hugepage_direct_gfpmask(vma);
page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
if (unlikely(!page)) {
count_vm_event(THP_FAULT_FALLBACK);
@@ -1185,7 +1192,7 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
alloc:
if (transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow()) {
- huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
+ huge_gfp = alloc_hugepage_direct_gfpmask(vma);
new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
} else
new_page = NULL;
@@ -2440,9 +2447,9 @@ static int khugepaged_find_target_node(void)
return 0;
}

-static inline struct page *alloc_hugepage(int defrag)
+static inline struct page *alloc_khugepaged_hugepage(void)
{
- return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
+ return alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
HPAGE_PMD_ORDER);
}

@@ -2451,7 +2458,7 @@ static struct page *khugepaged_alloc_hugepage(bool *wait)
struct page *hpage;

do {
- hpage = alloc_hugepage(khugepaged_defrag());
+ hpage = alloc_khugepaged_hugepage();
if (!hpage) {
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
if (!*wait)
@@ -2523,8 +2530,7 @@ static void collapse_huge_page(struct mm_struct *mm,
VM_BUG_ON(address & ~HPAGE_PMD_MASK);

/* Only allocate from the target node */
- gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
- __GFP_THISNODE;
+ gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;

/* release the mmap_sem read lock. */
new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
--
2.6.4
\
 
 \ /
  Last update: 2016-02-25 19:01    [W:0.079 / U:0.444 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site