lkml.org 
[lkml]   [2002]   [Oct]   [4]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
From
Subject[PATCH] patch-slab-split-06-mand-cpuarray
part 6:

- enable the cpu array for all caches
- remove the optimized implementations for quick list access - with cpu
arrays in all caches, the list access is now rare.
- make the cpu arrays mandatory, this removes 50% of the conditional
branches from the hot path of kmem_cache_alloc [1]
- poisoning for objects with constructors

Patch got a bit longer...

I forgot to mention this: head arrays mean that some pages can be
blocked due to objects in the head arrays, and not returned to
page_alloc.c. The current kernel never flushes the head arrays, this
might worsen the behaviour of low memory systems. The hunk that flushes
the arrays regularly comes next.

Details changelog: [to be read site by side with the patch]

* docu update
* "growing" is not really needed: races between grow and shrink are
handled by retrying. [additionally, the current kernel never
shrinks]
* move the batchcount into the cpu array:
the old code contained a race during cpu cache tuning:
update batchcount [in cachep] before or after the IPI?
And NUMA will need it anyway.
* bootstrap support: the cpu arrays are really mandatory, nothing works
without them. Thus a statically allocated cpu array is needed
to for starting the allocators.
* move the full, partial & free lists into a separate structure,
as a preparation for NUMA
* structure reorganization: now the cpu arrays are the most important
part, not the lists.
* dead code elimination: remove "failures", nowhere read.
* dead code elimination: remove "OPTIMIZE": not implemented.
The idea is to skip the virt_to_page lookup for caches with
on-slab slab structures, and use (ptr&PAGE_MASK) instead.
The details are in Bonwicks paper. Not fully implemented.
* remove GROWN: kernel never shrinks a cache, thus grown is meaningless.
* bootstrap: starting the slab allocator is now a 3 stage process:
- nothing works, use the statically allocated cpu arrays.
- the smallest kmalloc allocator works, use it to allocate
cpu arrays.
- all kmalloc allocators work, use the default cpu array size
* register a cpu nodifier callback, and allocate the needed head arrays
if a new cpu arrives
* always enable head arrays, even for DEBUG builds. Poisoning and
red-zoning now happens before an object is added to the arrays.
Insert enable_all_cpucaches into cpucache_init, there is no
need for seperate function.
* modifications to the debug checks due to the earlier calls of the
dtor for caches with poisoning enabled
* poison+ctor is now supported
* squezing 3 objects into a cacheline is hopeless, the FIXME is
not solvable and can be removed.
* add additional debug tests: check_irq_off(), check_irq_on(),
check_spinlock_acquired().
* move do_ccupdate_local nearer to do_tune_cpucache. Should have
been part of -04-drain.
* additional objects checks. red-zoning is tricky: it's implemented
by increasing the object size by 2*BYTES_PER_WORD.
Thus BYTES_PER_WORD must be added to objp before calling
the destructor, constructor or before returing the object
from alloc. The poison functions add BYTES_PER_WORD internally.
* create a flagcheck function, right now the tests are duplicated
in cache_grow [always] and alloc_debugcheck_before [DEBUG only]
* modify slab list updates: all allocs are now bulk allocs that try
to get multiple objects at once, update the list pointers
only at the end of a bulk alloc, not once per alloc.
* might_seep was moved into kmem_flagcheck.
* major hotpath change:
- cc always exists, no fallback
- cache_alloc_refill is called with disabled interrupts,
and does everything to recover from an empty cpu array.
Far shorter & simpler __cache_alloc [inlined in both
kmalloc and kmem_cache_alloc]
* __free_block, free_block, cache_flusharray:
main implementation of returning objects to the lists.
no big changes, diff lost track.
* new debug check: too early kmalloc or kmem_cache_alloc
* slightly reduce the sizes of the cpu arrays: keep
the size < a power of 2, including batchcount, avail
and now limit, for optimal kmalloc memory efficiency.

That's it.
I even found 2 bugs while reading: dtors and ctors for verify were
called with wrong parameters, with RED_ZONE enabled, and some checks
still assumed that POISON and ctor are incompatible.

--
Manfred
[1] there were 2 branches, now only one is left. But 50% sounds better.


--- 2.5/mm/slab.c Fri Oct 4 21:38:29 2002
+++ build-2.5/mm/slab.c Sat Oct 5 00:50:40 2002
@@ -8,6 +8,9 @@
* Major cleanup, different bufctl logic, per-cpu arrays
* (c) 2000 Manfred Spraul
*
+ * Cleanup, make the head arrays unconditional, preparation for NUMA
+ * (c) 2002 Manfred Spraul
+ *
* An implementation of the Slab Allocator as described in outline in;
* UNIX Internals: The New Frontiers by Uresh Vahalia
* Pub: Prentice Hall ISBN 0-13-101908-2
@@ -16,7 +19,6 @@
* Jeff Bonwick (Sun Microsystems).
* Presented at: USENIX Summer 1994 Technical Conference
*
- *
* The memory is organized in caches, one cache for each object type.
* (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
* Each cache consists out of many slabs (they are small (usually one
@@ -38,12 +40,14 @@
* kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
* during kmem_cache_destroy(). The caller must prevent concurrent allocs.
*
- * On SMP systems, each cache has a short per-cpu head array, most allocs
+ * Each cache has a short per-cpu head array, most allocs
* and frees go into that array, and if that array overflows, then 1/2
* of the entries in the array are given back into the global cache.
- * This reduces the number of spinlock operations.
+ * The head array is strictly LIFO and should improve the cache hit rates.
+ * On SMP, it additionally reduces the spinlock operations.
*
- * The c_cpuarray may not be read with enabled local interrupts.
+ * The c_cpuarray may not be read with enabled local interrupts -
+ * it's changed with a smp_call_function().
*
* SMP synchronization:
* constructors and destructors are called without any locking.
@@ -53,6 +57,10 @@
* and local interrupts are disabled so slab code is preempt-safe.
* The non-constant members are protected with a per-cache irq spinlock.
*
+ * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
+ * in 2000 - many ideas in the current implementation are derived from
+ * his patch.
+ *
* Further notes from the original documentation:
*
* 11 April '97. Started multi-threading - markhe
@@ -61,10 +69,6 @@
* can never happen inside an interrupt (kmem_cache_create(),
* kmem_cache_shrink() and kmem_cache_reap()).
*
- * To prevent kmem_cache_shrink() trying to shrink a 'growing' cache (which
- * maybe be sleeping and therefore not holding the semaphore/lock), the
- * growing field is used. This also prevents reaping from a cache.
- *
* At present, each engine can be growing a cache. This should be blocked.
*
*/
@@ -77,6 +81,7 @@
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/seq_file.h>
+#include <linux/notifier.h>
#include <asm/uaccess.h>

/*
@@ -170,37 +175,91 @@
* cpucache_t
*
* Per cpu structures
+ * Purpose:
+ * - LIFO ordering, to hand out cache-warm objects from _alloc
+ * - reduce spinlock operations
+ *
* The limit is stored in the per-cpu structure to reduce the data cache
* footprint.
+ * On NUMA systems, 2 per-cpu structures exist: one for the current
+ * node, one for wrong node free calls.
+ * Memory from the wrong node is never returned by alloc, it's returned
+ * to the home node as soon as the cpu cache is filled
+ *
*/
typedef struct cpucache_s {
unsigned int avail;
unsigned int limit;
+ unsigned int batchcount;
} cpucache_t;

+/* bootstrap: The caches do not work without cpuarrays anymore,
+ * but the cpuarrays are allocated from the generic caches...
+ */
+#define BOOT_CPUCACHE_ENTRIES 1
+struct cpucache_int {
+ cpucache_t cache;
+ void * entries[BOOT_CPUCACHE_ENTRIES];
+};
+
#define cc_entry(cpucache) \
((void **)(((cpucache_t*)(cpucache))+1))
#define cc_data(cachep) \
((cachep)->cpudata[smp_processor_id()])
/*
+ * NUMA: check if 'ptr' points into the current node,
+ * use the alternate cpudata cache if wrong
+ */
+#define cc_data_ptr(cachep, ptr) \
+ cc_data(cachep)
+
+/*
+ * The slab lists of all objects.
+ * Hopefully reduce the internal fragmentation
+ * NUMA: The spinlock could be moved from the kmem_cache_t
+ * into this structure, too. Figure out what causes
+ * fewer cross-node spinlock operations.
+ */
+struct kmem_list3 {
+ struct list_head slabs_partial; /* partial list first, better asm code */
+ struct list_head slabs_full;
+ struct list_head slabs_free;
+};
+
+#define LIST3_INIT(parent) \
+ { \
+ .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \
+ .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \
+ .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \
+ }
+#define list3_data(cachep) \
+ (&(cachep)->lists)
+
+/* NUMA: per-node */
+#define list3_data_ptr(cachep, ptr) \
+ list3_data(cachep)
+
+/*
* kmem_cache_t
*
* manages a cache.
*/
-
+
struct kmem_cache_s {
-/* 1) each alloc & free */
- /* full, partial first, then free */
- struct list_head slabs_full;
- struct list_head slabs_partial;
- struct list_head slabs_free;
+/* 1) per-cpu data, touched during every alloc/free */
+ cpucache_t *cpudata[NR_CPUS];
+ /* NUMA: cpucache_t *cpudata_othernode[NR_CPUS]; */
+ unsigned int batchcount;
+ unsigned int limit;
+/* 2) touched by every alloc & free from the backend */
+ struct kmem_list3 lists;
+ /* NUMA: kmem_3list_t *nodelists[NR_NODES] */
unsigned int objsize;
unsigned int flags; /* constant flags */
unsigned int num; /* # of objs per slab */
spinlock_t spinlock;
- unsigned int batchcount;

-/* 2) slab additions /removals */
+/* 3) cache_grow/shrink */
/* order of pgs per slab (2^n) */
unsigned int gfporder;

@@ -211,7 +270,6 @@
unsigned int colour_off; /* colour offset */
unsigned int colour_next; /* cache colouring */
kmem_cache_t *slabp_cache;
- unsigned int growing;
unsigned int dflags; /* dynamic flags */

/* constructor func */
@@ -220,13 +278,11 @@
/* de-constructor func */
void (*dtor)(void *, kmem_cache_t *, unsigned long);

- unsigned long failures;
-
-/* 3) cache creation/removal */
+/* 4) cache creation/removal */
const char *name;
struct list_head next;
-/* 4) per-cpu data */
- cpucache_t *cpudata[NR_CPUS];
+
+/* 5) statistics */
#if STATS
unsigned long num_active;
unsigned long num_allocations;
@@ -243,14 +299,8 @@

/* internal c_flags */
#define CFLGS_OFF_SLAB 0x010000UL /* slab management in own cache */
-#define CFLGS_OPTIMIZE 0x020000UL /* optimized slab lookup */
-
-/* c_dflags (dynamic flags). Need to hold the spinlock to access this member */
-#define DFLGS_GROWN 0x000001UL /* don't reap a recently grown */

#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
-#define OPTIMIZE(x) ((x)->flags & CFLGS_OPTIMIZE)
-#define GROWN(x) ((x)->dlags & DFLGS_GROWN)

#if STATS
#define STATS_INC_ACTIVE(x) ((x)->num_active++)
@@ -376,11 +426,15 @@
};
#undef CN

+struct cpucache_int cpuarray_cache __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1} };
+struct cpucache_int cpuarray_generic __initdata = { { 0, BOOT_CPUCACHE_ENTRIES, 1} };
+
/* internal cache of cache description objs */
static kmem_cache_t cache_cache = {
- .slabs_full = LIST_HEAD_INIT(cache_cache.slabs_full),
- .slabs_partial = LIST_HEAD_INIT(cache_cache.slabs_partial),
- .slabs_free = LIST_HEAD_INIT(cache_cache.slabs_free),
+ .lists = LIST3_INIT(cache_cache.lists),
+ .cpudata = { [0] = &cpuarray_cache.cache },
+ .batchcount = 1,
+ .limit = BOOT_CPUCACHE_ENTRIES,
.objsize = sizeof(kmem_cache_t),
.flags = SLAB_NO_REAP,
.spinlock = SPIN_LOCK_UNLOCKED,
@@ -400,10 +454,13 @@
* chicken and egg problem: delay the per-cpu array allocation
* until the general caches are up.
*/
-static int g_cpucache_up;
+enum {
+ NONE,
+ PARTIAL,
+ FULL
+} g_cpucache_up;

static void enable_cpucache (kmem_cache_t *cachep);
-static void enable_all_cpucaches (void);

/* Cal the num objs, wastage, and bytes left over for a given slab size. */
static void cache_estimate (unsigned long gfporder, size_t size,
@@ -433,6 +490,56 @@
*left_over = wastage;
}

+#ifdef CONFIG_SMP
+/*
+ * Note: if someone calls kmem_cache_alloc() on the new
+ * cpu before the cpuup callback had a chance to allocate
+ * the head arrays, it will oops.
+ * Is CPU_ONLINE early enough?
+ */
+static int __devinit cpuup_callback(struct notifier_block *nfb,
+ unsigned long action,
+ void *hcpu)
+{
+ int cpu = (int)hcpu;
+ if (action == CPU_ONLINE) {
+ struct list_head *p;
+ cpucache_t *nc;
+
+ down(&cache_chain_sem);
+
+ p = &cache_cache.next;
+ do {
+ int memsize;
+
+ kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
+ memsize = sizeof(void*)*cachep->limit+sizeof(cpucache_t);
+ nc = kmalloc(memsize, GFP_KERNEL);
+ if (!nc)
+ goto bad;
+ nc->avail = 0;
+ nc->limit = cachep->limit;
+ nc->batchcount = cachep->batchcount;
+
+ cachep->cpudata[cpu] = nc;
+
+ p = cachep->next.next;
+ } while (p != &cache_cache.next);
+
+ if (g_cpucache_up == FULL)
+ do_cpucall(do_timerstart, NULL, cpu);
+ up(&cache_chain_sem);
+ }
+
+ return NOTIFY_OK;
+bad:
+ up(&cache_chain_sem);
+ return NOTIFY_BAD;
+}
+
+static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
+#endif
+
/* Initialisation - setup the `cache' cache. */
void __init kmem_cache_init(void)
{
@@ -448,6 +555,13 @@

cache_cache.colour = left_over/cache_cache.colour_off;
cache_cache.colour_next = 0;
+
+#ifdef CONFIG_SMP
+ /* Register a cpu startup notifier callback
+ * that initializes cc_data for all new cpus
+ */
+ register_cpu_notifier(&cpucache_notifier);
+#endif
}


@@ -489,12 +603,46 @@
BUG();
sizes++;
} while (sizes->cs_size);
+ /*
+ * The generic caches are running - time to kick out the
+ * bootstrap cpucaches.
+ */
+ {
+ void * ptr;
+
+ ptr = kmalloc(sizeof(struct cpucache_int), GFP_KERNEL);
+ local_irq_disable();
+ BUG_ON(cc_data(&cache_cache) != &cpuarray_cache.cache);
+ memcpy(ptr, cc_data(&cache_cache), sizeof(struct cpucache_int));
+ cc_data(&cache_cache) = ptr;
+ local_irq_enable();
+
+ ptr = kmalloc(sizeof(struct cpucache_int), GFP_KERNEL);
+ local_irq_disable();
+ BUG_ON(cc_data(cache_sizes[0].cs_cachep) != &cpuarray_generic.cache);
+ memcpy(ptr, cc_data(cache_sizes[0].cs_cachep),
+ sizeof(struct cpucache_int));
+ cc_data(cache_sizes[0].cs_cachep) = ptr;
+ local_irq_enable();
+ }
}

int __init cpucache_init(void)
{
- g_cpucache_up = 1;
- enable_all_cpucaches();
+ struct list_head* p;
+
+ down(&cache_chain_sem);
+ g_cpucache_up = FULL;
+
+ p = &cache_cache.next;
+ do {
+ kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
+ enable_cpucache(cachep);
+ p = cachep->next.next;
+ } while (p != &cache_cache.next);
+
+ up(&cache_chain_sem);
+
return 0;
}

@@ -574,37 +722,34 @@
*/
static void slab_destroy (kmem_cache_t *cachep, slab_t *slabp)
{
- if (cachep->dtor
#if DEBUG
- || cachep->flags & (SLAB_POISON | SLAB_RED_ZONE)
-#endif
- ) {
+ int i;
+ for (i = 0; i < cachep->num; i++) {
+ void* objp = slabp->s_mem+cachep->objsize*i;
+ if (cachep->flags & SLAB_POISON)
+ check_poison_obj(cachep, objp);
+
+ if (cachep->flags & SLAB_RED_ZONE) {
+ if (*((unsigned long*)(objp)) != RED_MAGIC1)
+ BUG();
+ if (*((unsigned long*)(objp + cachep->objsize -
+ BYTES_PER_WORD)) != RED_MAGIC1)
+ BUG();
+ objp += BYTES_PER_WORD;
+ }
+ if (cachep->dtor && !(cachep->flags & SLAB_POISON))
+ (cachep->dtor)(objp, cachep, 0);
+ }
+#else
+ if (cachep->dtor) {
int i;
for (i = 0; i < cachep->num; i++) {
void* objp = slabp->s_mem+cachep->objsize*i;
-#if DEBUG
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*((unsigned long*)(objp)) != RED_MAGIC1)
- BUG();
- if (*((unsigned long*)(objp + cachep->objsize
- -BYTES_PER_WORD)) != RED_MAGIC1)
- BUG();
- objp += BYTES_PER_WORD;
- }
-#endif
- if (cachep->dtor)
- (cachep->dtor)(objp, cachep, 0);
-#if DEBUG
- if (cachep->flags & SLAB_RED_ZONE) {
- objp -= BYTES_PER_WORD;
- }
- if ((cachep->flags & SLAB_POISON) &&
- check_poison_obj(cachep, objp))
- BUG();
-#endif
+ (cachep->dtor)(objp, cachep, 0);
}
}
-
+#endif
+
kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);
if (OFF_SLAB(cachep))
kmem_cache_free(cachep->slabp_cache, slabp);
@@ -670,11 +815,6 @@
flags &= ~SLAB_DEBUG_INITIAL;
}

- if ((flags & SLAB_POISON) && ctor) {
- /* request for poisoning, but we can't do that with a constructor */
- printk("%sPoisoning requested, but con given - %s\n", func_nm, name);
- flags &= ~SLAB_POISON;
- }
#if FORCED_DEBUG
if ((size < (PAGE_SIZE>>3)) && !(flags & SLAB_MUST_HWCACHE_ALIGN))
/*
@@ -682,8 +822,7 @@
* fragmentation.
*/
flags |= SLAB_RED_ZONE;
- if (!ctor)
- flags |= SLAB_POISON;
+ flags |= SLAB_POISON;
#endif
#endif

@@ -735,7 +874,6 @@
if (flags & SLAB_HWCACHE_ALIGN) {
/* Need to adjust size so that objs are cache aligned. */
/* Small obj size, can get at least two per cache line. */
- /* FIXME: only power of 2 supported, was better */
while (size < align/2)
align /= 2;
size = (size+align-1)&(~(align-1));
@@ -802,19 +940,16 @@
cachep->colour_off = offset;
cachep->colour = left_over/offset;

- /* init remaining fields */
- if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))
- flags |= CFLGS_OPTIMIZE;
-
cachep->flags = flags;
cachep->gfpflags = 0;
if (flags & SLAB_CACHE_DMA)
cachep->gfpflags |= GFP_DMA;
spin_lock_init(&cachep->spinlock);
cachep->objsize = size;
- INIT_LIST_HEAD(&cachep->slabs_full);
- INIT_LIST_HEAD(&cachep->slabs_partial);
- INIT_LIST_HEAD(&cachep->slabs_free);
+ /* NUMA */
+ INIT_LIST_HEAD(&cachep->lists.slabs_full);
+ INIT_LIST_HEAD(&cachep->lists.slabs_partial);
+ INIT_LIST_HEAD(&cachep->lists.slabs_free);

if (flags & CFLGS_OFF_SLAB)
cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
@@ -822,8 +957,27 @@
cachep->dtor = dtor;
cachep->name = name;

- if (g_cpucache_up)
+ if (g_cpucache_up == FULL) {
enable_cpucache(cachep);
+ } else {
+ if (g_cpucache_up == NONE) {
+ /* Note: the first kmem_cache_create must create
+ * the cache that's used by kmalloc(24), otherwise
+ * the creation of further caches will BUG().
+ */
+ cc_data(cachep) = &cpuarray_generic.cache;
+ g_cpucache_up = PARTIAL;
+ } else {
+ cc_data(cachep) = kmalloc(sizeof(struct cpucache_int),GFP_KERNEL);
+ }
+ BUG_ON(!cc_data(cachep));
+ cc_data(cachep)->avail = 0;
+ cc_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
+ cc_data(cachep)->batchcount = 1;
+ cachep->batchcount = 1;
+ cachep->limit = BOOT_CPUCACHE_ENTRIES;
+ }
+
/* Need the semaphore to access the chain. */
down(&cache_chain_sem);
{
@@ -861,32 +1015,27 @@
return cachep;
}

-
-#if DEBUG
-/*
- * This check if the kmem_cache_t pointer is chained in the cache_cache
- * list. -arca
- */
-static int is_chained_cache(kmem_cache_t * cachep)
+static inline void check_irq_off(void)
{
- struct list_head *p;
- int ret = 0;
-
- /* Find the cache in the chain of caches. */
- down(&cache_chain_sem);
- list_for_each(p, &cache_chain) {
- if (p == &cachep->next) {
- ret = 1;
- break;
- }
- }
- up(&cache_chain_sem);
+#if DEBUG
+ BUG_ON(!irqs_disabled());
+#endif
+}

- return ret;
+static inline void check_irq_on(void)
+{
+#if DEBUG
+ BUG_ON(irqs_disabled());
+#endif
}
-#else
-#define is_chained_cache(x) 1
+
+static inline void check_spinlock_acquired(kmem_cache_t *cachep)
+{
+#ifdef CONFIG_SMP
+ check_irq_off();
+ BUG_ON(spin_trylock(&cachep->spinlock));
#endif
+}

/*
* Waits for all CPUs to execute func().
@@ -900,20 +1049,6 @@
if (smp_call_function(func, arg, 1, 1))
BUG();
}
-typedef struct ccupdate_struct_s
-{
- kmem_cache_t *cachep;
- cpucache_t *new[NR_CPUS];
-} ccupdate_struct_t;
-
-static void do_ccupdate_local(void *info)
-{
- ccupdate_struct_t *new = (ccupdate_struct_t *)info;
- cpucache_t *old = cc_data(new->cachep);
-
- cc_data(new->cachep) = new->new[smp_processor_id()];
- new->new[smp_processor_id()] = old;
-}

static void free_block (kmem_cache_t* cachep, void** objpp, int len);

@@ -922,6 +1057,7 @@
kmem_cache_t *cachep = (kmem_cache_t*)arg;
cpucache_t *cc;

+ check_irq_off();
cc = cc_data(cachep);
free_block(cachep, &cc_entry(cc)[0], cc->avail);
cc->avail = 0;
@@ -932,6 +1068,8 @@
smp_call_function_all_cpus(do_drain, cachep);
}

+
+/* NUMA shrink all list3s */
static int __cache_shrink(kmem_cache_t *cachep)
{
slab_t *slabp;
@@ -939,17 +1077,17 @@

drain_cpu_caches(cachep);

+ check_irq_on();
spin_lock_irq(&cachep->spinlock);

- /* If the cache is growing, stop shrinking. */
- while (!cachep->growing) {
+ for(;;) {
struct list_head *p;

- p = cachep->slabs_free.prev;
- if (p == &cachep->slabs_free)
+ p = cachep->lists.slabs_free.prev;
+ if (p == &cachep->lists.slabs_free)
break;

- slabp = list_entry(cachep->slabs_free.prev, slab_t, list);
+ slabp = list_entry(cachep->lists.slabs_free.prev, slab_t, list);
#if DEBUG
if (slabp->inuse)
BUG();
@@ -960,7 +1098,8 @@
slab_destroy(cachep, slabp);
spin_lock_irq(&cachep->spinlock);
}
- ret = !list_empty(&cachep->slabs_full) || !list_empty(&cachep->slabs_partial);
+ ret = !list_empty(&cachep->lists.slabs_full) ||
+ !list_empty(&cachep->lists.slabs_partial);
spin_unlock_irq(&cachep->spinlock);
return ret;
}
@@ -974,7 +1113,7 @@
*/
int kmem_cache_shrink(kmem_cache_t *cachep)
{
- if (!cachep || in_interrupt() || !is_chained_cache(cachep))
+ if (!cachep || in_interrupt())
BUG();

return __cache_shrink(cachep);
@@ -1021,6 +1160,7 @@
int i;
for (i = 0; i < NR_CPUS; i++)
kfree(cachep->cpudata[i]);
+ /* NUMA: free the list3 structures */
}
kmem_cache_free(&cache_cache, cachep);

@@ -1039,10 +1179,6 @@
if (!slabp)
return NULL;
} else {
- /* FIXME: change to
- slabp = objp
- * if you enable OPTIMIZE
- */
slabp = objp+colour_off;
colour_off += L1_CACHE_ALIGN(cachep->num *
sizeof(kmem_bufctl_t) + sizeof(slab_t));
@@ -1062,34 +1198,35 @@
for (i = 0; i < cachep->num; i++) {
void* objp = slabp->s_mem+cachep->objsize*i;
#if DEBUG
+ /* need to poison the objs? */
+ if (cachep->flags & SLAB_POISON)
+ poison_obj(cachep, objp);
+
if (cachep->flags & SLAB_RED_ZONE) {
*((unsigned long*)(objp)) = RED_MAGIC1;
*((unsigned long*)(objp + cachep->objsize -
BYTES_PER_WORD)) = RED_MAGIC1;
objp += BYTES_PER_WORD;
}
-#endif
-
/*
* Constructors are not allowed to allocate memory from
* the same cache which they are a constructor for.
* Otherwise, deadlock. They must also be threaded.
*/
- if (cachep->ctor)
+ if (cachep->ctor && !(cachep->flags & SLAB_POISON))
cachep->ctor(objp, cachep, ctor_flags);
-#if DEBUG
- if (cachep->flags & SLAB_RED_ZONE)
- objp -= BYTES_PER_WORD;
- if (cachep->flags & SLAB_POISON)
- /* need to poison the objs */
- poison_obj(cachep, objp);
+
if (cachep->flags & SLAB_RED_ZONE) {
+ objp -= BYTES_PER_WORD;
if (*((unsigned long*)(objp)) != RED_MAGIC1)
BUG();
if (*((unsigned long*)(objp + cachep->objsize -
BYTES_PER_WORD)) != RED_MAGIC1)
BUG();
}
+#else
+ if (cachep->ctor)
+ cachep->ctor(objp, cachep, ctor_flags);
#endif
slab_bufctl(slabp)[i] = i+1;
}
@@ -1097,6 +1234,20 @@
slabp->free = 0;
}

+static void kmem_flagcheck(kmem_cache_t *cachep, int flags)
+{
+ if (flags & __GFP_WAIT)
+ might_sleep();
+
+ if (flags & SLAB_DMA) {
+ if (!(cachep->gfpflags & GFP_DMA))
+ BUG();
+ } else {
+ if (cachep->gfpflags & GFP_DMA)
+ BUG();
+ }
+}
+
/*
* Grow (by 1) the number of slabs within a cache. This is called by
* kmem_cache_alloc() when there are no active objs left in a cache.
@@ -1109,7 +1260,6 @@
size_t offset;
unsigned int i, local_flags;
unsigned long ctor_flags;
- unsigned long save_flags;

/* Be lazy and only check for valid flags here,
* keeping it out of the critical path in kmem_cache_alloc().
@@ -1119,15 +1269,6 @@
if (flags & SLAB_NO_GROW)
return 0;

- /*
- * The test for missing atomic flag is performed here, rather than
- * the more obvious place, simply to reduce the critical path length
- * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
- * will eventually be caught here (where it matters).
- */
- if (in_interrupt() && (flags & __GFP_WAIT))
- BUG();
-
ctor_flags = SLAB_CTOR_CONSTRUCTOR;
local_flags = (flags & SLAB_LEVEL_MASK);
if (!(local_flags & __GFP_WAIT))
@@ -1138,7 +1279,8 @@
ctor_flags |= SLAB_CTOR_ATOMIC;

/* About to mess with non-constant members - lock. */
- spin_lock_irqsave(&cachep->spinlock, save_flags);
+ check_irq_off();
+ spin_lock(&cachep->spinlock);

/* Get colour for the slab, and cal the next value. */
offset = cachep->colour_next;
@@ -1146,19 +1288,20 @@
if (cachep->colour_next >= cachep->colour)
cachep->colour_next = 0;
offset *= cachep->colour_off;
- cachep->dflags |= DFLGS_GROWN;

- cachep->growing++;
- spin_unlock_irqrestore(&cachep->spinlock, save_flags);
+ spin_unlock(&cachep->spinlock);

- /* A series of memory allocations for a new slab.
- * Neither the cache-chain semaphore, or cache-lock, are
- * held, but the incrementing c_growing prevents this
- * cache from being reaped or shrunk.
- * Note: The cache could be selected in for reaping in
- * cache_reap(), but when the final test is made the
- * growing value will be seen.
+ if (local_flags & __GFP_WAIT)
+ local_irq_enable();
+
+ /*
+ * The test for missing atomic flag is performed here, rather than
+ * the more obvious place, simply to reduce the critical path length
+ * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
+ * will eventually be caught here (where it matters).
*/
+ kmem_flagcheck(cachep, flags);
+

/* Get mem for the objs. */
if (!(objp = kmem_getpages(cachep, flags)))
@@ -1181,62 +1324,117 @@

cache_init_objs(cachep, slabp, ctor_flags);

- spin_lock_irqsave(&cachep->spinlock, save_flags);
- cachep->growing--;
+ if (local_flags & __GFP_WAIT)
+ local_irq_disable();
+ check_irq_off();
+ spin_lock(&cachep->spinlock);

/* Make slab active. */
- list_add_tail(&slabp->list, &cachep->slabs_free);
+ list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free));
STATS_INC_GROWN(cachep);
- cachep->failures = 0;
-
- spin_unlock_irqrestore(&cachep->spinlock, save_flags);
+ spin_unlock(&cachep->spinlock);
return 1;
opps1:
kmem_freepages(cachep, objp);
failed:
- spin_lock_irqsave(&cachep->spinlock, save_flags);
- cachep->growing--;
- spin_unlock_irqrestore(&cachep->spinlock, save_flags);
return 0;
}

/*
* Perform extra freeing checks:
- * - detect double free
* - detect bad pointers.
- * Called with the cache-lock held.
+ * - POISON/RED_ZONE checking
+ * - destructor calls, for caches with POISON+dtor
*/
-
-#if DEBUG
-static int extra_free_checks (kmem_cache_t * cachep,
- slab_t *slabp, void * objp)
+static inline void kfree_debugcheck(const void *objp)
{
- int i;
- unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
+#if DEBUG
+ struct page *page;

- if (objnr >= cachep->num)
- BUG();
- if (objp != slabp->s_mem + objnr*cachep->objsize)
+ if (!virt_addr_valid(objp)) {
+ printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
+ (unsigned long)objp);
+ BUG();
+ }
+ page = virt_to_page(objp);
+ if (!PageSlab(page)) {
+ printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
BUG();
-
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- if (i == objnr)
- BUG();
}
- return 0;
+#endif
}
-#endif

-static inline void cache_alloc_head(kmem_cache_t *cachep, int flags)
+static inline void *cache_free_debugcheck (kmem_cache_t * cachep, void * objp)
{
- if (flags & SLAB_DMA) {
- if (!(cachep->gfpflags & GFP_DMA))
+#if DEBUG
+ struct page *page;
+ unsigned int objnr;
+ slab_t *slabp;
+
+ kfree_debugcheck(objp);
+ page = virt_to_page(objp);
+
+ BUG_ON(GET_PAGE_CACHE(page) != cachep);
+ slabp = GET_PAGE_SLAB(page);
+
+ if (cachep->flags & SLAB_RED_ZONE) {
+ objp -= BYTES_PER_WORD;
+ if (xchg((unsigned long *)objp, RED_MAGIC1) != RED_MAGIC2)
+ /* Either write before start, or a double free. */
BUG();
- } else {
- if (cachep->gfpflags & GFP_DMA)
+ if (xchg((unsigned long *)(objp+cachep->objsize -
+ BYTES_PER_WORD), RED_MAGIC1) != RED_MAGIC2)
+ /* Either write past end, or a double free. */
BUG();
}
+
+ objnr = (objp-slabp->s_mem)/cachep->objsize;
+
+ BUG_ON(objnr >= cachep->num);
+ BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
+
+ if (cachep->flags & SLAB_DEBUG_INITIAL) {
+ /* Need to call the slab's constructor so the
+ * caller can perform a verify of its state (debugging).
+ * Called without the cache-lock held.
+ */
+ if (cachep->flags & SLAB_RED_ZONE) {
+ cachep->ctor(objp+BYTES_PER_WORD,
+ cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
+ } else {
+ cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
+ }
+ }
+ if (cachep->flags & SLAB_POISON && cachep->dtor) {
+ /* we want to cache poison the object,
+ * call the destruction callback
+ */
+ if (cachep->flags & SLAB_RED_ZONE)
+ cachep->dtor(objp+BYTES_PER_WORD, cachep, 0);
+ else
+ cachep->dtor(objp, cachep, 0);
+ }
+ if (cachep->flags & SLAB_POISON) {
+ poison_obj(cachep, objp);
+ }
+#endif
+ return objp;
+}
+
+static inline void check_slabp(kmem_cache_t *cachep, slab_t *slabp)
+{
+#if DEBUG
+ int i;
+ int entries = 0;
+
+ check_spinlock_acquired(cachep);
+ /* Check slab's freelist to see if this obj is there. */
+ for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
+ entries++;
+ BUG_ON(entries > cachep->num);
+ }
+ BUG_ON(entries != cachep->num - slabp->inuse);
+#endif
}

static inline void * cache_alloc_one_tail (kmem_cache_t *cachep,
@@ -1244,6 +1442,8 @@
{
void *objp;

+ check_spinlock_acquired(cachep);
+
STATS_INC_ALLOCED(cachep);
STATS_INC_ACTIVE(cachep);
STATS_SET_HIGH(cachep);
@@ -1253,11 +1453,83 @@
objp = slabp->s_mem + slabp->free*cachep->objsize;
slabp->free=slab_bufctl(slabp)[slabp->free];

- if (unlikely(slabp->free == BUFCTL_END)) {
- list_del(&slabp->list);
- list_add(&slabp->list, &cachep->slabs_full);
+ return objp;
+}
+
+static inline void cache_alloc_listfixup(struct kmem_list3 *l3, slab_t *slabp)
+{
+ list_del(&slabp->list);
+ if (slabp->free == BUFCTL_END) {
+ list_add(&slabp->list, &l3->slabs_full);
+ } else {
+ list_add(&slabp->list, &l3->slabs_partial);
}
+}
+
+static void* cache_alloc_refill(kmem_cache_t* cachep, int flags)
+{
+ int batchcount;
+ struct kmem_list3 *l3;
+ cpucache_t *cc;
+
+ check_irq_off();
+ cc = cc_data(cachep);
+retry:
+ batchcount = cc->batchcount;
+ l3 = list3_data(cachep);
+
+ BUG_ON(cc->avail > 0);
+ spin_lock(&cachep->spinlock);
+ while (batchcount > 0) {
+ struct list_head *entry;
+ slab_t *slabp;
+ /* Get slab alloc is to come from. */
+ entry = l3->slabs_partial.next;
+ if (entry == &l3->slabs_partial) {
+ entry = l3->slabs_free.next;
+ if (entry == &l3->slabs_free)
+ goto must_grow;
+ }
+
+ slabp = list_entry(entry, slab_t, list);
+ check_slabp(cachep, slabp);
+ while (slabp->inuse < cachep->num && batchcount--)
+ cc_entry(cc)[cc->avail++] =
+ cache_alloc_one_tail(cachep, slabp);
+ check_slabp(cachep, slabp);
+ cache_alloc_listfixup(l3, slabp);
+ }
+
+must_grow:
+ spin_unlock(&cachep->spinlock);
+
+ if (unlikely(!cc->avail)) {
+ int x;
+ x = cache_grow(cachep, flags);
+
+ // cache_grow can reenable interrupts, then cc could change.
+ cc = cc_data(cachep);
+ if (!x && cc->avail == 0) // no objects in sight? abort
+ return NULL;
+
+ if (!cc->avail) // objects refilled by interrupt?
+ goto retry;
+ }
+ return cc_entry(cc)[--cc->avail];
+}
+
+static inline void cache_alloc_debugcheck_before(kmem_cache_t *cachep, int flags)
+{
#if DEBUG
+ kmem_flagcheck(cachep, flags);
+#endif
+}
+
+static inline void *cache_alloc_debugcheck_after (kmem_cache_t *cachep, unsigned long flags, void *objp)
+{
+#if DEBUG
+ if (!objp)
+ return objp;
if (cachep->flags & SLAB_POISON)
if (check_poison_obj(cachep, objp))
BUG();
@@ -1271,246 +1543,128 @@
BUG();
objp += BYTES_PER_WORD;
}
+ if (cachep->ctor && cachep->flags & SLAB_POISON) {
+ unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
+
+ if (!flags & __GFP_WAIT)
+ ctor_flags |= SLAB_CTOR_ATOMIC;
+
+ cachep->ctor(objp, cachep, ctor_flags);
+ }
#endif
return objp;
}

-/*
- * Returns a ptr to an obj in the given cache.
- * caller must guarantee synchronization
- * #define for the goto optimization 8-)
- */
-#define cache_alloc_one(cachep) \
-({ \
- struct list_head * slabs_partial, * entry; \
- slab_t *slabp; \
- \
- slabs_partial = &(cachep)->slabs_partial; \
- entry = slabs_partial->next; \
- if (unlikely(entry == slabs_partial)) { \
- struct list_head * slabs_free; \
- slabs_free = &(cachep)->slabs_free; \
- entry = slabs_free->next; \
- if (unlikely(entry == slabs_free)) \
- goto alloc_new_slab; \
- list_del(entry); \
- list_add(entry, slabs_partial); \
- } \
- \
- slabp = list_entry(entry, slab_t, list); \
- cache_alloc_one_tail(cachep, slabp); \
-})
-
-void* cache_alloc_batch(kmem_cache_t* cachep, int flags)
-{
- int batchcount = cachep->batchcount;
- cpucache_t* cc = cc_data(cachep);
-
- spin_lock(&cachep->spinlock);
- while (batchcount--) {
- struct list_head * slabs_partial, * entry;
- slab_t *slabp;
- /* Get slab alloc is to come from. */
- slabs_partial = &(cachep)->slabs_partial;
- entry = slabs_partial->next;
- if (unlikely(entry == slabs_partial)) {
- struct list_head * slabs_free;
- slabs_free = &(cachep)->slabs_free;
- entry = slabs_free->next;
- if (unlikely(entry == slabs_free))
- break;
- list_del(entry);
- list_add(entry, slabs_partial);
- }
-
- slabp = list_entry(entry, slab_t, list);
- cc_entry(cc)[cc->avail++] =
- cache_alloc_one_tail(cachep, slabp);
- }
- spin_unlock(&cachep->spinlock);
-
- if (cc->avail)
- return cc_entry(cc)[--cc->avail];
- return NULL;
-}

static inline void * __cache_alloc (kmem_cache_t *cachep, int flags)
{
unsigned long save_flags;
void* objp;
+ cpucache_t *cc;

- if (flags & __GFP_WAIT)
- might_sleep();
+ cache_alloc_debugcheck_before(cachep, flags);

- cache_alloc_head(cachep, flags);
-try_again:
local_irq_save(save_flags);
- {
- cpucache_t *cc = cc_data(cachep);
-
- if (cc) {
- if (cc->avail) {
- STATS_INC_ALLOCHIT(cachep);
- objp = cc_entry(cc)[--cc->avail];
- } else {
- STATS_INC_ALLOCMISS(cachep);
- objp = cache_alloc_batch(cachep,flags);
- local_irq_restore(save_flags);
- if (!objp)
- goto alloc_new_slab_nolock;
- return objp;
- }
- } else {
- spin_lock(&cachep->spinlock);
- objp = cache_alloc_one(cachep);
- spin_unlock(&cachep->spinlock);
- }
+ cc = cc_data(cachep);
+ if (likely(cc->avail)) {
+ STATS_INC_ALLOCHIT(cachep);
+ objp = cc_entry(cc)[--cc->avail];
+ } else {
+ STATS_INC_ALLOCMISS(cachep);
+ objp = cache_alloc_refill(cachep, flags);
}
local_irq_restore(save_flags);
+ objp = cache_alloc_debugcheck_after(cachep, flags, objp);
return objp;
-alloc_new_slab:
- spin_unlock(&cachep->spinlock);
- local_irq_restore(save_flags);
-alloc_new_slab_nolock:
- if (cache_grow(cachep, flags))
- /* Someone may have stolen our objs. Doesn't matter, we'll
- * just come back here again.
- */
- goto try_again;
- return NULL;
}

-/*
- * Release an obj back to its cache. If the obj has a constructed
- * state, it should be in this state _before_ it is released.
- * - caller is responsible for the synchronization
+/*
+ * NUMA: different approach needed if the spinlock is moved into
+ * the l3 structure
*/

-#if DEBUG
-# define CHECK_NR(pg) \
- do { \
- if (!virt_addr_valid(pg)) { \
- printk(KERN_ERR "kfree: out of range ptr %lxh.\n", \
- (unsigned long)objp); \
- BUG(); \
- } \
- } while (0)
-# define CHECK_PAGE(addr) \
- do { \
- struct page *page = virt_to_page(addr); \
- CHECK_NR(addr); \
- if (!PageSlab(page)) { \
- printk(KERN_ERR "kfree: bad ptr %lxh.\n", \
- (unsigned long)objp); \
- BUG(); \
- } \
- } while (0)
-
-#else
-# define CHECK_PAGE(pg) do { } while (0)
-#endif
-
-static inline void cache_free_one(kmem_cache_t *cachep, void *objp)
+static inline void __free_block (kmem_cache_t* cachep, void** objpp, int len)
{
- slab_t* slabp;
-
- CHECK_PAGE(objp);
- /* reduces memory footprint
- *
- if (OPTIMIZE(cachep))
- slabp = (void*)((unsigned long)objp&(~(PAGE_SIZE-1)));
- else
- */
- slabp = GET_PAGE_SLAB(virt_to_page(objp));
+ check_irq_off();
+ spin_lock(&cachep->spinlock);
+ /* NUMA: move add into loop */

-#if DEBUG
- if (cachep->flags & SLAB_DEBUG_INITIAL)
- /* Need to call the slab's constructor so the
- * caller can perform a verify of its state (debugging).
- * Called without the cache-lock held.
- */
- cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
+ for ( ; len > 0; len--, objpp++) {
+ slab_t* slabp;
+ void *objp = *objpp;

- if (cachep->flags & SLAB_RED_ZONE) {
- objp -= BYTES_PER_WORD;
- if (xchg((unsigned long *)objp, RED_MAGIC1) != RED_MAGIC2)
- /* Either write before start, or a double free. */
- BUG();
- if (xchg((unsigned long *)(objp+cachep->objsize -
- BYTES_PER_WORD), RED_MAGIC1) != RED_MAGIC2)
- /* Either write past end, or a double free. */
- BUG();
- }
- if (cachep->flags & SLAB_POISON)
- poison_obj(cachep, objp);
- if (extra_free_checks(cachep, slabp, objp))
- return;
-#endif
- {
- unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
+ slabp = GET_PAGE_SLAB(virt_to_page(objp));
+ list_del(&slabp->list);
+ {
+ unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;

- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- }
- STATS_DEC_ACTIVE(cachep);
+ slab_bufctl(slabp)[objnr] = slabp->free;
+ slabp->free = objnr;
+ }
+ STATS_DEC_ACTIVE(cachep);

- /* fixup slab chains */
- {
- int inuse = slabp->inuse;
+ /* fixup slab chains */
if (unlikely(!--slabp->inuse)) {
- /* Was partial or full, now empty. */
- list_del(&slabp->list);
- /* We only buffer a single page */
- if (list_empty(&cachep->slabs_free))
- list_add(&slabp->list, &cachep->slabs_free);
- else
+ if (list_empty(&list3_data_ptr(cachep, objp)->slabs_free)) {
slab_destroy(cachep, slabp);
- } else if (unlikely(inuse == cachep->num)) {
- /* Was full. */
- list_del(&slabp->list);
- list_add_tail(&slabp->list, &cachep->slabs_partial);
+ } else {
+ list_add(&slabp->list,
+ &list3_data_ptr(cachep, objp)->slabs_free);
+ }
+ } else {
+ /* Unconditionally move a slab to the end of the
+ * partial list on free - maximum time for the
+ * other objects to be freed, too.
+ */
+ list_add_tail(&slabp->list, &list3_data_ptr(cachep, objp)->slabs_partial);
}
}
+ spin_unlock(&cachep->spinlock);
}

-static inline void __free_block (kmem_cache_t* cachep,
- void** objpp, int len)
+static void free_block(kmem_cache_t* cachep, void** objpp, int len)
{
- for ( ; len > 0; len--, objpp++)
- cache_free_one(cachep, *objpp);
+ __free_block(cachep, objpp, len);
}

-static void free_block (kmem_cache_t* cachep, void** objpp, int len)
+static void cache_flusharray (kmem_cache_t* cachep, cpucache_t *cc)
{
- spin_lock(&cachep->spinlock);
- __free_block(cachep, objpp, len);
- spin_unlock(&cachep->spinlock);
+ int batchcount;
+
+ batchcount = cc->batchcount;
+#if DEBUG
+ BUG_ON(!batchcount || batchcount > cc->avail);
+#endif
+ check_irq_off();
+ __free_block(cachep, &cc_entry(cc)[0], batchcount);
+
+ cc->avail -= batchcount;
+ memmove(&cc_entry(cc)[0], &cc_entry(cc)[batchcount],
+ sizeof(void*)*cc->avail);
}

/*
* __cache_free
- * called with disabled ints
+ * Release an obj back to its cache. If the obj has a constructed
+ * state, it must be in this state _before_ it is released.
+ *
+ * Called with disabled ints.
*/
static inline void __cache_free (kmem_cache_t *cachep, void* objp)
{
- cpucache_t *cc = cc_data(cachep);
+ cpucache_t *cc = cc_data_ptr(cachep, objp);

- CHECK_PAGE(objp);
- if (cc) {
- int batchcount;
- if (cc->avail < cc->limit) {
- STATS_INC_FREEHIT(cachep);
- cc_entry(cc)[cc->avail++] = objp;
- return;
- }
- STATS_INC_FREEMISS(cachep);
- batchcount = cachep->batchcount;
- cc->avail -= batchcount;
- free_block(cachep, &cc_entry(cc)[cc->avail], batchcount);
+ check_irq_off();
+ objp = cache_free_debugcheck(cachep, objp);
+
+ if (likely(cc->avail < cc->limit)) {
+ STATS_INC_FREEHIT(cachep);
cc_entry(cc)[cc->avail++] = objp;
return;
} else {
- free_block(cachep, &objp, 1);
+ STATS_INC_FREEMISS(cachep);
+ cache_flusharray(cachep, cc);
+ cc_entry(cc)[cc->avail++] = objp;
}
}

@@ -1555,6 +1709,13 @@
for (; csizep->cs_size; csizep++) {
if (size > csizep->cs_size)
continue;
+#if DEBUG
+ /* This happens if someone tries to call
+ * kmem_cache_create(), or kmalloc(), before
+ * the generic caches are initialized.
+ */
+ BUG_ON(csizep->cs_cachep == NULL);
+#endif
return __cache_alloc(flags & GFP_DMA ?
csizep->cs_dmacachep : csizep->cs_cachep, flags);
}
@@ -1572,11 +1733,6 @@
void kmem_cache_free (kmem_cache_t *cachep, void *objp)
{
unsigned long flags;
-#if DEBUG
- CHECK_PAGE(objp);
- if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))
- BUG();
-#endif

local_irq_save(flags);
__cache_free(cachep, objp);
@@ -1598,7 +1754,7 @@
if (!objp)
return;
local_irq_save(flags);
- CHECK_PAGE(objp);
+ kfree_debugcheck(objp);
c = GET_PAGE_CACHE(virt_to_page(objp));
__cache_free(c, (void*)objp);
local_irq_restore(flags);
@@ -1629,47 +1785,54 @@
return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep : csizep->cs_cachep;
}

-/* called with cache_chain_sem acquired. */
-static int tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount)
+struct ccupdate_struct {
+ kmem_cache_t *cachep;
+ cpucache_t *new[NR_CPUS];
+};
+
+static void do_ccupdate_local(void *info)
{
- ccupdate_struct_t new;
- int i;
+ struct ccupdate_struct *new = (struct ccupdate_struct *)info;
+ cpucache_t *old;

- /*
- * These are admin-provided, so we are more graceful.
- */
- if (limit < 0)
- return -EINVAL;
- if (batchcount < 0)
- return -EINVAL;
- if (batchcount > limit)
- return -EINVAL;
- if (limit != 0 && !batchcount)
- return -EINVAL;
+ check_irq_off();
+ old = cc_data(new->cachep);
+
+ cc_data(new->cachep) = new->new[smp_processor_id()];
+ new->new[smp_processor_id()] = old;
+}
+
+
+static int do_tune_cpucache (kmem_cache_t* cachep, int limit, int batchcount)
+{
+ struct ccupdate_struct new;
+ int i;

memset(&new.new,0,sizeof(new.new));
- if (limit) {
- for (i = 0; i < NR_CPUS; i++) {
- cpucache_t* ccnew;
-
- ccnew = kmalloc(sizeof(void*)*limit+
- sizeof(cpucache_t), GFP_KERNEL);
- if (!ccnew) {
- for (i--; i >= 0; i--) kfree(new.new[i]);
- return -ENOMEM;
- }
- ccnew->limit = limit;
- ccnew->avail = 0;
- new.new[i] = ccnew;
+ for (i = 0; i < NR_CPUS; i++) {
+ cpucache_t* ccnew;
+
+ ccnew = kmalloc(sizeof(void*)*limit+
+ sizeof(cpucache_t), GFP_KERNEL);
+ if (!ccnew) {
+ for (i--; i >= 0; i--) kfree(new.new[i]);
+ return -ENOMEM;
}
+ ccnew->avail = 0;
+ ccnew->limit = limit;
+ ccnew->batchcount = batchcount;
+ new.new[i] = ccnew;
}
new.cachep = cachep;
+
+ smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
+
+ check_irq_on();
spin_lock_irq(&cachep->spinlock);
cachep->batchcount = batchcount;
+ cachep->limit = limit;
spin_unlock_irq(&cachep->spinlock);

- smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
-
for (i = 0; i < NR_CPUS; i++) {
cpucache_t* ccold = new.new[i];
if (!ccold)
@@ -1682,48 +1845,25 @@
return 0;
}

-/*
- * If slab debugging is enabled, don't batch slabs
- * on the per-cpu lists by defaults.
- */
+
static void enable_cpucache (kmem_cache_t *cachep)
{
-#ifndef CONFIG_DEBUG_SLAB
int err;
int limit;

- /* FIXME: optimize */
if (cachep->objsize > PAGE_SIZE)
- return;
- if (cachep->objsize > 1024)
- limit = 60;
+ limit = 8;
+ else if (cachep->objsize > 1024)
+ limit = 54;
else if (cachep->objsize > 256)
- limit = 124;
+ limit = 120;
else
- limit = 252;
+ limit = 248;

- err = tune_cpucache(cachep, limit, limit/2);
+ err = do_tune_cpucache(cachep, limit, limit/2);
if (err)
printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
cachep->name, -err);
-#endif
-}
-
-static void enable_all_cpucaches (void)
-{
- struct list_head* p;
-
- down(&cache_chain_sem);
-
- p = &cache_cache.next;
- do {
- kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);
-
- enable_cpucache(cachep);
- p = cachep->next.next;
- } while (p != &cache_cache.next);
-
- up(&cache_chain_sem);
}

/**
@@ -1762,12 +1902,6 @@
if (searchp->flags & SLAB_NO_REAP)
goto next;
spin_lock_irq(&searchp->spinlock);
- if (searchp->growing)
- goto next_unlock;
- if (searchp->dflags & DFLGS_GROWN) {
- searchp->dflags &= ~DFLGS_GROWN;
- goto next_unlock;
- }
{
cpucache_t *cc = cc_data(searchp);
if (cc && cc->avail) {
@@ -1777,8 +1911,8 @@
}

full_free = 0;
- p = searchp->slabs_free.next;
- while (p != &searchp->slabs_free) {
+ p = searchp->lists.slabs_free.next;
+ while (p != &searchp->lists.slabs_free) {
slabp = list_entry(p, slab_t, list);
#if DEBUG
if (slabp->inuse)
@@ -1808,7 +1942,6 @@
goto perfect;
}
}
-next_unlock:
spin_unlock_irq(&searchp->spinlock);
next:
searchp = list_entry(searchp->next.next,kmem_cache_t,next);
@@ -1827,10 +1960,8 @@
for (scan = 0; scan < best_len; scan++) {
struct list_head *p;

- if (best_cachep->growing)
- break;
- p = best_cachep->slabs_free.prev;
- if (p == &best_cachep->slabs_free)
+ p = best_cachep->lists.slabs_free.prev;
+ if (p == &best_cachep->lists.slabs_free)
break;
slabp = list_entry(p,slab_t,list);
#if DEBUG
@@ -1913,23 +2044,24 @@
return 0;
}

+ check_irq_on();
spin_lock_irq(&cachep->spinlock);
active_objs = 0;
num_slabs = 0;
- list_for_each(q,&cachep->slabs_full) {
+ list_for_each(q,&cachep->lists.slabs_full) {
slabp = list_entry(q, slab_t, list);
if (slabp->inuse != cachep->num)
BUG();
active_objs += cachep->num;
active_slabs++;
}
- list_for_each(q,&cachep->slabs_partial) {
+ list_for_each(q,&cachep->lists.slabs_partial) {
slabp = list_entry(q, slab_t, list);
BUG_ON(slabp->inuse == cachep->num || !slabp->inuse);
active_objs += slabp->inuse;
active_slabs++;
}
- list_for_each(q,&cachep->slabs_free) {
+ list_for_each(q,&cachep->lists.slabs_free) {
slabp = list_entry(q, slab_t, list);
if (slabp->inuse)
BUG();
@@ -2050,7 +2182,13 @@
kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);

if (!strcmp(cachep->name, kbuf)) {
- res = tune_cpucache(cachep, limit, batchcount);
+ if (limit < 1 ||
+ batchcount < 1 ||
+ batchcount > limit) {
+ res = -EINVAL;
+ } else {
+ res = do_tune_cpucache(cachep, limit, batchcount);
+ }
break;
}
}
\
 
 \ /
  Last update: 2005-03-22 13:29    [W:0.064 / U:0.092 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site