lkml.org 
[lkml]   [2023]   [May]   [17]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
SubjectRe: [PATCHv11 6/9] efi/unaccepted: Avoid load_unaligned_zeropad() stepping into unaccepted memory
From
On 5/13/23 17:04, Kirill A. Shutemov wrote:
> load_unaligned_zeropad() can lead to unwanted loads across page boundaries.
> The unwanted loads are typically harmless. But, they might be made to
> totally unrelated or even unmapped memory. load_unaligned_zeropad()
> relies on exception fixup (#PF, #GP and now #VE) to recover from these
> unwanted loads.
>
> But, this approach does not work for unaccepted memory. For TDX, a load
> from unaccepted memory will not lead to a recoverable exception within
> the guest. The guest will exit to the VMM where the only recourse is to
> terminate the guest.
>
> There are two parts to fix this issue and comprehensively avoid access
> to unaccepted memory. Together these ensure that an extra "guard" page
> is accepted in addition to the memory that needs to be used.
>
> 1. Implicitly extend the range_contains_unaccepted_memory(start, end)
> checks up to end+unit_size if 'end' is aligned on a unit_size
> boundary.
> 2. Implicitly extend accept_memory(start, end) to end+unit_size if 'end'
> is aligned on a unit_size boundary.
>
> Side note: This leads to something strange. Pages which were accepted
> at boot, marked by the firmware as accepted and will never
> _need_ to be accepted might be on unaccepted_pages list
> This is a cue to ensure that the next page is accepted
> before 'page' can be used.
>
> This is an actual, real-world problem which was discovered during TDX
> testing.
>
> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>

> ---
> drivers/firmware/efi/unaccepted_memory.c | 35 ++++++++++++++++++++++++
> 1 file changed, 35 insertions(+)
>
> diff --git a/drivers/firmware/efi/unaccepted_memory.c b/drivers/firmware/efi/unaccepted_memory.c
> index bb91c41f76fb..3d1ca60916dd 100644
> --- a/drivers/firmware/efi/unaccepted_memory.c
> +++ b/drivers/firmware/efi/unaccepted_memory.c
> @@ -37,6 +37,34 @@ void accept_memory(phys_addr_t start, phys_addr_t end)
> start -= unaccepted->phys_base;
> end -= unaccepted->phys_base;
>
> + /*
> + * load_unaligned_zeropad() can lead to unwanted loads across page
> + * boundaries. The unwanted loads are typically harmless. But, they
> + * might be made to totally unrelated or even unmapped memory.
> + * load_unaligned_zeropad() relies on exception fixup (#PF, #GP and now
> + * #VE) to recover from these unwanted loads.
> + *
> + * But, this approach does not work for unaccepted memory. For TDX, a
> + * load from unaccepted memory will not lead to a recoverable exception
> + * within the guest. The guest will exit to the VMM where the only
> + * recourse is to terminate the guest.
> + *
> + * There are two parts to fix this issue and comprehensively avoid
> + * access to unaccepted memory. Together these ensure that an extra
> + * "guard" page is accepted in addition to the memory that needs to be
> + * used:
> + *
> + * 1. Implicitly extend the range_contains_unaccepted_memory(start, end)
> + * checks up to end+unit_size if 'end' is aligned on a unit_size
> + * boundary.
> + *
> + * 2. Implicitly extend accept_memory(start, end) to end+unit_size if
> + * 'end' is aligned on a unit_size boundary. (immediately following
> + * this comment)
> + */
> + if (!(end % unit_size))
> + end += unit_size;
> +
> /* Make sure not to overrun the bitmap */
> if (end > unaccepted->size * unit_size * BITS_PER_BYTE)
> end = unaccepted->size * unit_size * BITS_PER_BYTE;
> @@ -84,6 +112,13 @@ bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end)
> start -= unaccepted->phys_base;
> end -= unaccepted->phys_base;
>
> + /*
> + * Also consider the unaccepted state of the *next* page. See fix #1 in
> + * the comment on load_unaligned_zeropad() in accept_memory().
> + */
> + if (!(end % unit_size))
> + end += unit_size;
> +
> /* Make sure not to overrun the bitmap */
> if (end > unaccepted->size * unit_size * BITS_PER_BYTE)
> end = unaccepted->size * unit_size * BITS_PER_BYTE;

\
 
 \ /
  Last update: 2023-05-17 18:08    [W:0.256 / U:1.696 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site