lkml.org 
[lkml]   [2021]   [Mar]   [12]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
Subject[PATCH v2 04/11] kasan: docs: update error reports section
From
Update the "Error reports" section in KASAN documentation:

- Mention that bug titles are best-effort.
- Move and reword the part about auxiliary stacks from
"Implementation details".
- Punctuation, readability, and other minor clean-ups.

Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
---
Documentation/dev-tools/kasan.rst | 46 +++++++++++++++++--------------
1 file changed, 26 insertions(+), 20 deletions(-)

diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
index 46f4e9680805..cd12c890b888 100644
--- a/Documentation/dev-tools/kasan.rst
+++ b/Documentation/dev-tools/kasan.rst
@@ -60,7 +60,7 @@ physical pages, enable ``CONFIG_PAGE_OWNER`` and boot with ``page_owner=on``.
Error reports
~~~~~~~~~~~~~

-A typical out-of-bounds access generic KASAN report looks like this::
+A typical KASAN report looks like this::

==================================================================
BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan]
@@ -133,33 +133,43 @@ A typical out-of-bounds access generic KASAN report looks like this::
ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
==================================================================

-The header of the report provides a short summary of what kind of bug happened
-and what kind of access caused it. It's followed by a stack trace of the bad
-access, a stack trace of where the accessed memory was allocated (in case bad
-access happens on a slab object), and a stack trace of where the object was
-freed (in case of a use-after-free bug report). Next comes a description of
-the accessed slab object and information about the accessed memory page.
+The report header summarizes what kind of bug happened and what kind of access
+caused it. It is followed by a stack trace of the bad access, a stack trace of
+where the accessed memory was allocated (in case a slab object was accessed),
+and a stack trace of where the object was freed (in case of a use-after-free
+bug report). Next comes a description of the accessed slab object and the
+information about the accessed memory page.

-In the last section the report shows memory state around the accessed address.
-Internally KASAN tracks memory state separately for each memory granule, which
+In the end, the report shows the memory state around the accessed address.
+Internally, KASAN tracks memory state separately for each memory granule, which
is either 8 or 16 aligned bytes depending on KASAN mode. Each number in the
memory state section of the report shows the state of one of the memory
granules that surround the accessed address.

-For generic KASAN the size of each memory granule is 8. The state of each
+For generic KASAN, the size of each memory granule is 8. The state of each
granule is encoded in one shadow byte. Those 8 bytes can be accessible,
-partially accessible, freed or be a part of a redzone. KASAN uses the following
-encoding for each shadow byte: 0 means that all 8 bytes of the corresponding
+partially accessible, freed, or be a part of a redzone. KASAN uses the following
+encoding for each shadow byte: 00 means that all 8 bytes of the corresponding
memory region are accessible; number N (1 <= N <= 7) means that the first N
bytes are accessible, and other (8 - N) bytes are not; any negative value
indicates that the entire 8-byte word is inaccessible. KASAN uses different
negative values to distinguish between different kinds of inaccessible memory
like redzones or freed memory (see mm/kasan/kasan.h).

-In the report above the arrows point to the shadow byte 03, which means that
-the accessed address is partially accessible. For tag-based KASAN modes this
-last report section shows the memory tags around the accessed address
-(see the `Implementation details`_ section).
+In the report above, the arrow points to the shadow byte ``03``, which means
+that the accessed address is partially accessible.
+
+For tag-based KASAN modes, this last report section shows the memory tags around
+the accessed address (see the `Implementation details`_ section).
+
+Note that KASAN bug titles (like ``slab-out-of-bounds`` or ``use-after-free``)
+are best-effort: KASAN prints the most probable bug type based on the limited
+information it has. The actual type of the bug might be different.
+
+Generic KASAN also reports up to two auxiliary call stack traces. These stack
+traces point to places in code that interacted with the object but that are not
+directly present in the bad access stack trace. Currently, this includes
+call_rcu() and workqueue queuing.

Boot parameters
~~~~~~~~~~~~~~~
@@ -214,10 +224,6 @@ function calls GCC directly inserts the code to check the shadow memory.
This option significantly enlarges kernel but it gives x1.1-x2 performance
boost over outline instrumented kernel.

-Generic KASAN also reports the last 2 call stacks to creation of work that
-potentially has access to an object. Call stacks for the following are shown:
-call_rcu() and workqueue queuing.
-
Generic KASAN is the only mode that delays the reuse of freed object via
quarantine (see mm/kasan/quarantine.c for implementation).

--
2.31.0.rc2.261.g7f71774620-goog
\
 
 \ /
  Last update: 2021-03-12 15:25    [W:0.086 / U:0.568 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site