lkml.org 
[lkml]   [2021]   [Feb]   [3]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
    /
    From
    Subject[v6 PATCH 0/11] Make shrinker's nr_deferred memcg aware
    Date

    Changelog
    v5 --> v6:
    * Rebased on top of https://lore.kernel.org/linux-mm/1611216029-34397-1-git-send-email-abaci-bugfix@linux.alibaba.com/
    per Kirill.
    * Don't register shrinker idr with NULL and remove idr_replace() per Vlastimil.
    * Move nr_deferred before map to guarantee the alignment per Vlastimil.
    * Misc minor code cleanup and refactor per Kirill and Vlastimil.
    * Added Acked-by from Vlastimil for path #1, #2, #3, #5, #9 and #10.
    v4 --> v5:
    * Incorporated the comments from Kirill.
    * Rebased to v5.11-rc5.
    v3 --> v4:
    * Removed "memcg_" prefix for shrinker_maps related functions per Roman.
    * Use write lock instead of read lock per Kirill. Also removed Johannes's ack
    since write lock is used.
    * Incorporated the comments from Kirill.
    * Removed RFC.
    * Rebased to v5.11-rc4.
    v2 --> v3:
    * Moved shrinker_maps related code to vmscan.c per Dave.
    * Removed memcg_shrinker_map_size. Calcuated the size of map via shrinker_nr_max
    per Johannes.
    * Consolidated shrinker_deferred with shrinker_maps into one struct per Dave.
    * Simplified the nr_deferred related code.
    * Dropped the memory barrier from v2.
    * Moved nr_deferred reparent code to vmscan.c per Dave.
    * Added test coverage information in patch #11. Dave is concerned about the
    potential regression. I didn't notice regression with my tests, but suggestions
    about more test coverage is definitely welcome. And it may help spot regression
    with this patch in -mm tree then linux-next tree so I keep it in this version.
    * The code cleanup and consolidation resulted in the series grow to 11 patches.
    * Rebased onto 5.11-rc2.
    v1 --> v2:
    * Use shrinker->flags to store the new SHRINKER_REGISTERED flag per Roman.
    * Folded patch #1 into patch #6 per Roman.
    * Added memory barrier to prevent shrink_slab_memcg from seeing NULL shrinker_maps/
    shrinker_deferred per Kirill.
    * Removed memcg_shrinker_map_mutex. Protcted shrinker_map/shrinker_deferred
    allocations from expand with shrinker_rwsem per Johannes.

    Recently huge amount one-off slab drop was seen on some vfs metadata heavy workloads,
    it turned out there were huge amount accumulated nr_deferred objects seen by the
    shrinker.

    On our production machine, I saw absurd number of nr_deferred shown as the below
    tracing result:

    <...>-48776 [032] .... 27970562.458916: mm_shrink_slab_start:
    super_cache_scan+0x0/0x1a0 ffff9a83046f3458: nid: 0 objects to shrink
    2531805877005 gfp_flags GFP_HIGHUSER_MOVABLE pgs_scanned 32 lru_pgs
    9300 cache items 1667 delta 11 total_scan 833

    There are 2.5 trillion deferred objects on one node, assuming all of them
    are dentry (192 bytes per object), so the total size of deferred on
    one node is ~480TB. It is definitely ridiculous.

    I managed to reproduce this problem with kernel build workload plus negative dentry
    generator.

    First step, run the below kernel build test script:

    NR_CPUS=`cat /proc/cpuinfo | grep -e processor | wc -l`

    cd /root/Buildarea/linux-stable

    for i in `seq 1500`; do
    cgcreate -g memory:kern_build
    echo 4G > /sys/fs/cgroup/memory/kern_build/memory.limit_in_bytes

    echo 3 > /proc/sys/vm/drop_caches
    cgexec -g memory:kern_build make clean > /dev/null 2>&1
    cgexec -g memory:kern_build make -j$NR_CPUS > /dev/null 2>&1

    cgdelete -g memory:kern_build
    done

    Then run the below negative dentry generator script:

    NR_CPUS=`cat /proc/cpuinfo | grep -e processor | wc -l`

    mkdir /sys/fs/cgroup/memory/test
    echo $$ > /sys/fs/cgroup/memory/test/tasks

    for i in `seq $NR_CPUS`; do
    while true; do
    FILE=`head /dev/urandom | tr -dc A-Za-z0-9 | head -c 64`
    cat $FILE 2>/dev/null
    done &
    done

    Then kswapd will shrink half of dentry cache in just one loop as the below tracing result
    showed:

    kswapd0-475 [028] .... 305968.252561: mm_shrink_slab_start: super_cache_scan+0x0/0x190 0000000024acf00c: nid: 0
    objects to shrink 4994376020 gfp_flags GFP_KERNEL cache items 93689873 delta 45746 total_scan 46844936 priority 12
    kswapd0-475 [021] .... 306013.099399: mm_shrink_slab_end: super_cache_scan+0x0/0x190 0000000024acf00c: nid: 0 unused
    scan count 4994376020 new scan count 4947576838 total_scan 8 last shrinker return val 46844928

    There were huge number of deferred objects before the shrinker was called, the behavior
    does match the code but it might be not desirable from the user's stand of point.

    The excessive amount of nr_deferred might be accumulated due to various reasons, for example:
    * GFP_NOFS allocation
    * Significant times of small amount scan (< scan_batch, 1024 for vfs metadata)

    However the LRUs of slabs are per memcg (memcg-aware shrinkers) but the deferred objects
    is per shrinker, this may have some bad effects:
    * Poor isolation among memcgs. Some memcgs which happen to have frequent limit
    reclaim may get nr_deferred accumulated to a huge number, then other innocent
    memcgs may take the fall. In our case the main workload was hit.
    * Unbounded deferred objects. There is no cap for deferred objects, it can outgrow
    ridiculously as the tracing result showed.
    * Easy to get out of control. Although shrinkers take into account deferred objects,
    but it can go out of control easily. One misconfigured memcg could incur absurd
    amount of deferred objects in a period of time.
    * Sort of reclaim problems, i.e. over reclaim, long reclaim latency, etc. There may be
    hundred GB slab caches for vfe metadata heavy workload, shrink half of them may take
    minutes. We observed latency spike due to the prolonged reclaim.

    These issues also have been discussed in https://lore.kernel.org/linux-mm/20200916185823.5347-1-shy828301@gmail.com/.
    The patchset is the outcome of that discussion.

    So this patchset makes nr_deferred per-memcg to tackle the problem. It does:
    * Have memcg_shrinker_deferred per memcg per node, just like what shrinker_map
    does. Instead it is an atomic_long_t array, each element represent one shrinker
    even though the shrinker is not memcg aware, this simplifies the implementation.
    For memcg aware shrinkers, the deferred objects are just accumulated to its own
    memcg. The shrinkers just see nr_deferred from its own memcg. Non memcg aware
    shrinkers still use global nr_deferred from struct shrinker.
    * Once the memcg is offlined, its nr_deferred will be reparented to its parent along
    with LRUs.
    * The root memcg has memcg_shrinker_deferred array too. It simplifies the handling of
    reparenting to root memcg.
    * Cap nr_deferred to 2x of the length of lru. The idea is borrowed from Dave Chinner's
    series (https://lore.kernel.org/linux-xfs/20191031234618.15403-1-david@fromorbit.com/)

    The downside is each memcg has to allocate extra memory to store the nr_deferred array.
    On our production environment, there are typically around 40 shrinkers, so each memcg
    needs ~320 bytes. 10K memcgs would need ~3.2MB memory. It seems fine.

    We have been running the patched kernel on some hosts of our fleet (test and production) for
    months, it works very well. The monitor data shows the working set is sustained as expected.

    Yang Shi (11):
    mm: vmscan: use nid from shrink_control for tracepoint
    mm: vmscan: consolidate shrinker_maps handling code
    mm: vmscan: use shrinker_rwsem to protect shrinker_maps allocation
    mm: vmscan: remove memcg_shrinker_map_size
    mm: memcontrol: rename shrinker_map to shrinker_info
    mm: vmscan: use a new flag to indicate shrinker is registered
    mm: vmscan: add per memcg shrinker nr_deferred
    mm: vmscan: use per memcg nr_deferred of shrinker
    mm: vmscan: don't need allocate shrinker->nr_deferred for memcg aware shrinkers
    mm: memcontrol: reparent nr_deferred when memcg offline
    mm: vmscan: shrink deferred objects proportional to priority

    include/linux/memcontrol.h | 23 +++---
    include/linux/shrinker.h | 7 +-
    mm/huge_memory.c | 4 +-
    mm/list_lru.c | 6 +-
    mm/memcontrol.c | 130 +-------------------------------
    mm/vmscan.c | 370 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++------------------------
    6 files changed, 298 insertions(+), 242 deletions(-)

    \
     
     \ /
      Last update: 2021-02-03 18:33    [W:3.176 / U:0.096 seconds]
    ©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site