lkml.org 
[lkml]   [2020]   [Sep]   [8]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH 5.8 133/186] x86/mm/32: Bring back vmalloc faulting on x86_32
Date
[ Upstream commit 4819e15f740ec884a50bdc431d7f1e7638b6f7d9 ]

One can not simply remove vmalloc faulting on x86-32. Upstream

commit: 7f0a002b5a21 ("x86/mm: remove vmalloc faulting")

removed it on x86 alltogether because previously the
arch_sync_kernel_mappings() interface was introduced. This interface
added synchronization of vmalloc/ioremap page-table updates to all
page-tables in the system at creation time and was thought to make
vmalloc faulting obsolete.

But that assumption was incredibly naive.

It turned out that there is a race window between the time the vmalloc
or ioremap code establishes a mapping and the time it synchronizes
this change to other page-tables in the system.

During this race window another CPU or thread can establish a vmalloc
mapping which uses the same intermediate page-table entries (e.g. PMD
or PUD) and does no synchronization in the end, because it found all
necessary mappings already present in the kernel reference page-table.

But when these intermediate page-table entries are not yet
synchronized, the other CPU or thread will continue with a vmalloc
address that is not yet mapped in the page-table it currently uses,
causing an unhandled page fault and oops like below:

BUG: unable to handle page fault for address: fe80c000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
*pde = 33183067 *pte = a8648163
Oops: 0002 [#1] SMP
CPU: 1 PID: 13514 Comm: cve-2017-17053 Tainted: G
...
Call Trace:
ldt_dup_context+0x66/0x80
dup_mm+0x2b3/0x480
copy_process+0x133b/0x15c0
_do_fork+0x94/0x3e0
__ia32_sys_clone+0x67/0x80
__do_fast_syscall_32+0x3f/0x70
do_fast_syscall_32+0x29/0x60
do_SYSENTER_32+0x15/0x20
entry_SYSENTER_32+0x9f/0xf2
EIP: 0xb7eef549

So the arch_sync_kernel_mappings() interface is racy, but removing it
would mean to re-introduce the vmalloc_sync_all() interface, which is
even more awful. Keep arch_sync_kernel_mappings() in place and catch
the race condition in the page-fault handler instead.

Do a partial revert of above commit to get vmalloc faulting on x86-32
back in place.

Fixes: 7f0a002b5a21 ("x86/mm: remove vmalloc faulting")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200902155904.17544-1-joro@8bytes.org
[sl: revert 7f0a002b5a21 instead to restore vmalloc faulting for x86-64]
Signed-off-by: Sasha Levin <sashal@kernel.org>
---
arch/x86/include/asm/switch_to.h | 23 ++++++
arch/x86/kernel/setup_percpu.c | 6 +-
arch/x86/mm/fault.c | 134 +++++++++++++++++++++++++++++++
arch/x86/mm/pti.c | 8 +-
arch/x86/mm/tlb.c | 37 +++++++++
5 files changed, 204 insertions(+), 4 deletions(-)

diff --git a/arch/x86/include/asm/switch_to.h b/arch/x86/include/asm/switch_to.h
index 9f69cc497f4b6..0e059b73437b4 100644
--- a/arch/x86/include/asm/switch_to.h
+++ b/arch/x86/include/asm/switch_to.h
@@ -12,6 +12,27 @@ struct task_struct *__switch_to_asm(struct task_struct *prev,
__visible struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *next);

+/* This runs runs on the previous thread's stack. */
+static inline void prepare_switch_to(struct task_struct *next)
+{
+#ifdef CONFIG_VMAP_STACK
+ /*
+ * If we switch to a stack that has a top-level paging entry
+ * that is not present in the current mm, the resulting #PF will
+ * will be promoted to a double-fault and we'll panic. Probe
+ * the new stack now so that vmalloc_fault can fix up the page
+ * tables if needed. This can only happen if we use a stack
+ * in vmap space.
+ *
+ * We assume that the stack is aligned so that it never spans
+ * more than one top-level paging entry.
+ *
+ * To minimize cache pollution, just follow the stack pointer.
+ */
+ READ_ONCE(*(unsigned char *)next->thread.sp);
+#endif
+}
+
asmlinkage void ret_from_fork(void);

/*
@@ -46,6 +67,8 @@ struct fork_frame {

#define switch_to(prev, next, last) \
do { \
+ prepare_switch_to(next); \
+ \
((last) = __switch_to_asm((prev), (next))); \
} while (0)

diff --git a/arch/x86/kernel/setup_percpu.c b/arch/x86/kernel/setup_percpu.c
index fd945ce78554e..e6d7894ad1279 100644
--- a/arch/x86/kernel/setup_percpu.c
+++ b/arch/x86/kernel/setup_percpu.c
@@ -287,9 +287,9 @@ void __init setup_per_cpu_areas(void)
/*
* Sync back kernel address range again. We already did this in
* setup_arch(), but percpu data also needs to be available in
- * the smpboot asm and arch_sync_kernel_mappings() doesn't sync to
- * swapper_pg_dir on 32-bit. The per-cpu mappings need to be available
- * there too.
+ * the smpboot asm. We can't reliably pick up percpu mappings
+ * using vmalloc_fault(), because exception dispatch needs
+ * percpu data.
*
* FIXME: Can the later sync in setup_cpu_entry_areas() replace
* this call?
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index 1ead568c01012..370c314b8f44d 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -215,6 +215,44 @@ void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
}
}

+/*
+ * 32-bit:
+ *
+ * Handle a fault on the vmalloc or module mapping area
+ */
+static noinline int vmalloc_fault(unsigned long address)
+{
+ unsigned long pgd_paddr;
+ pmd_t *pmd_k;
+ pte_t *pte_k;
+
+ /* Make sure we are in vmalloc area: */
+ if (!(address >= VMALLOC_START && address < VMALLOC_END))
+ return -1;
+
+ /*
+ * Synchronize this task's top level page-table
+ * with the 'reference' page table.
+ *
+ * Do _not_ use "current" here. We might be inside
+ * an interrupt in the middle of a task switch..
+ */
+ pgd_paddr = read_cr3_pa();
+ pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
+ if (!pmd_k)
+ return -1;
+
+ if (pmd_large(*pmd_k))
+ return 0;
+
+ pte_k = pte_offset_kernel(pmd_k, address);
+ if (!pte_present(*pte_k))
+ return -1;
+
+ return 0;
+}
+NOKPROBE_SYMBOL(vmalloc_fault);
+
/*
* Did it hit the DOS screen memory VA from vm86 mode?
*/
@@ -279,6 +317,79 @@ static void dump_pagetable(unsigned long address)

#else /* CONFIG_X86_64: */

+/*
+ * 64-bit:
+ *
+ * Handle a fault on the vmalloc area
+ */
+static noinline int vmalloc_fault(unsigned long address)
+{
+ pgd_t *pgd, *pgd_k;
+ p4d_t *p4d, *p4d_k;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ /* Make sure we are in vmalloc area: */
+ if (!(address >= VMALLOC_START && address < VMALLOC_END))
+ return -1;
+
+ /*
+ * Copy kernel mappings over when needed. This can also
+ * happen within a race in page table update. In the later
+ * case just flush:
+ */
+ pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
+ pgd_k = pgd_offset_k(address);
+ if (pgd_none(*pgd_k))
+ return -1;
+
+ if (pgtable_l5_enabled()) {
+ if (pgd_none(*pgd)) {
+ set_pgd(pgd, *pgd_k);
+ arch_flush_lazy_mmu_mode();
+ } else {
+ BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
+ }
+ }
+
+ /* With 4-level paging, copying happens on the p4d level. */
+ p4d = p4d_offset(pgd, address);
+ p4d_k = p4d_offset(pgd_k, address);
+ if (p4d_none(*p4d_k))
+ return -1;
+
+ if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
+ set_p4d(p4d, *p4d_k);
+ arch_flush_lazy_mmu_mode();
+ } else {
+ BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
+ }
+
+ BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
+
+ pud = pud_offset(p4d, address);
+ if (pud_none(*pud))
+ return -1;
+
+ if (pud_large(*pud))
+ return 0;
+
+ pmd = pmd_offset(pud, address);
+ if (pmd_none(*pmd))
+ return -1;
+
+ if (pmd_large(*pmd))
+ return 0;
+
+ pte = pte_offset_kernel(pmd, address);
+ if (!pte_present(*pte))
+ return -1;
+
+ return 0;
+}
+NOKPROBE_SYMBOL(vmalloc_fault);
+
#ifdef CONFIG_CPU_SUP_AMD
static const char errata93_warning[] =
KERN_ERR
@@ -1111,6 +1222,29 @@ do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
*/
WARN_ON_ONCE(hw_error_code & X86_PF_PK);

+ /*
+ * We can fault-in kernel-space virtual memory on-demand. The
+ * 'reference' page table is init_mm.pgd.
+ *
+ * NOTE! We MUST NOT take any locks for this case. We may
+ * be in an interrupt or a critical region, and should
+ * only copy the information from the master page table,
+ * nothing more.
+ *
+ * Before doing this on-demand faulting, ensure that the
+ * fault is not any of the following:
+ * 1. A fault on a PTE with a reserved bit set.
+ * 2. A fault caused by a user-mode access. (Do not demand-
+ * fault kernel memory due to user-mode accesses).
+ * 3. A fault caused by a page-level protection violation.
+ * (A demand fault would be on a non-present page which
+ * would have X86_PF_PROT==0).
+ */
+ if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
+ if (vmalloc_fault(address) >= 0)
+ return;
+ }
+
/* Was the fault spurious, caused by lazy TLB invalidation? */
if (spurious_kernel_fault(hw_error_code, address))
return;
diff --git a/arch/x86/mm/pti.c b/arch/x86/mm/pti.c
index a8a924b3c3358..0b0d1cdce2e73 100644
--- a/arch/x86/mm/pti.c
+++ b/arch/x86/mm/pti.c
@@ -447,7 +447,13 @@ static void __init pti_clone_user_shared(void)
* the sp1 and sp2 slots.
*
* This is done for all possible CPUs during boot to ensure
- * that it's propagated to all mms.
+ * that it's propagated to all mms. If we were to add one of
+ * these mappings during CPU hotplug, we would need to take
+ * some measure to make sure that every mm that subsequently
+ * ran on that CPU would have the relevant PGD entry in its
+ * pagetables. The usual vmalloc_fault() mechanism would not
+ * work for page faults taken in entry_SYSCALL_64 before RSP
+ * is set up.
*/

unsigned long va = (unsigned long)&per_cpu(cpu_tss_rw, cpu);
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index 1a3569b43aa5b..cf81902e6992f 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -317,6 +317,34 @@ void switch_mm(struct mm_struct *prev, struct mm_struct *next,
local_irq_restore(flags);
}

+static void sync_current_stack_to_mm(struct mm_struct *mm)
+{
+ unsigned long sp = current_stack_pointer;
+ pgd_t *pgd = pgd_offset(mm, sp);
+
+ if (pgtable_l5_enabled()) {
+ if (unlikely(pgd_none(*pgd))) {
+ pgd_t *pgd_ref = pgd_offset_k(sp);
+
+ set_pgd(pgd, *pgd_ref);
+ }
+ } else {
+ /*
+ * "pgd" is faked. The top level entries are "p4d"s, so sync
+ * the p4d. This compiles to approximately the same code as
+ * the 5-level case.
+ */
+ p4d_t *p4d = p4d_offset(pgd, sp);
+
+ if (unlikely(p4d_none(*p4d))) {
+ pgd_t *pgd_ref = pgd_offset_k(sp);
+ p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
+
+ set_p4d(p4d, *p4d_ref);
+ }
+ }
+}
+
static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
{
unsigned long next_tif = task_thread_info(next)->flags;
@@ -525,6 +553,15 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
*/
cond_ibpb(tsk);

+ if (IS_ENABLED(CONFIG_VMAP_STACK)) {
+ /*
+ * If our current stack is in vmalloc space and isn't
+ * mapped in the new pgd, we'll double-fault. Forcibly
+ * map it.
+ */
+ sync_current_stack_to_mm(next);
+ }
+
/*
* Stop remote flushes for the previous mm.
* Skip kernel threads; we never send init_mm TLB flushing IPIs,
--
2.25.1


\
 
 \ /
  Last update: 2020-09-08 19:11    [W:1.105 / U:0.608 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site