lkml.org 
[lkml]   [2020]   [Sep]   [21]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH 4.19 46/49] x86/boot/compressed: Disable relocation relaxation
Date
From: Arvind Sankar <nivedita@alum.mit.edu>

commit 09e43968db40c33a73e9ddbfd937f46d5c334924 upstream.

The x86-64 psABI [0] specifies special relocation types
(R_X86_64_[REX_]GOTPCRELX) for indirection through the Global Offset
Table, semantically equivalent to R_X86_64_GOTPCREL, which the linker
can take advantage of for optimization (relaxation) at link time. This
is supported by LLD and binutils versions 2.26 onwards.

The compressed kernel is position-independent code, however, when using
LLD or binutils versions before 2.27, it must be linked without the -pie
option. In this case, the linker may optimize certain instructions into
a non-position-independent form, by converting foo@GOTPCREL(%rip) to $foo.

This potential issue has been present with LLD and binutils-2.26 for a
long time, but it has never manifested itself before now:

- LLD and binutils-2.26 only relax
movq foo@GOTPCREL(%rip), %reg
to
leaq foo(%rip), %reg
which is still position-independent, rather than
mov $foo, %reg
which is permitted by the psABI when -pie is not enabled.

- GCC happens to only generate GOTPCREL relocations on mov instructions.

- CLang does generate GOTPCREL relocations on non-mov instructions, but
when building the compressed kernel, it uses its integrated assembler
(due to the redefinition of KBUILD_CFLAGS dropping -no-integrated-as),
which has so far defaulted to not generating the GOTPCRELX
relocations.

Nick Desaulniers reports [1,2]:

"A recent change [3] to a default value of configuration variable
(ENABLE_X86_RELAX_RELOCATIONS OFF -> ON) in LLVM now causes Clang's
integrated assembler to emit R_X86_64_GOTPCRELX/R_X86_64_REX_GOTPCRELX
relocations. LLD will relax instructions with these relocations based
on whether the image is being linked as position independent or not.
When not, then LLD will relax these instructions to use absolute
addressing mode (R_RELAX_GOT_PC_NOPIC). This causes kernels built with
Clang and linked with LLD to fail to boot."

Patch series [4] is a solution to allow the compressed kernel to be
linked with -pie unconditionally, but even if merged is unlikely to be
backported. As a simple solution that can be applied to stable as well,
prevent the assembler from generating the relaxed relocation types using
the -mrelax-relocations=no option. For ease of backporting, do this
unconditionally.

[0] https://gitlab.com/x86-psABIs/x86-64-ABI/-/blob/master/x86-64-ABI/linker-optimization.tex#L65
[1] https://lore.kernel.org/lkml/20200807194100.3570838-1-ndesaulniers@google.com/
[2] https://github.com/ClangBuiltLinux/linux/issues/1121
[3] https://reviews.llvm.org/rGc41a18cf61790fc898dcda1055c3efbf442c14c0
[4] https://lore.kernel.org/lkml/20200731202738.2577854-1-nivedita@alum.mit.edu/

Reported-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200812004308.1448603-1-nivedita@alum.mit.edu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

---
arch/x86/boot/compressed/Makefile | 2 ++
1 file changed, 2 insertions(+)

--- a/arch/x86/boot/compressed/Makefile
+++ b/arch/x86/boot/compressed/Makefile
@@ -38,6 +38,8 @@ KBUILD_CFLAGS += $(call cc-option,-fno-s
KBUILD_CFLAGS += $(call cc-disable-warning, address-of-packed-member)
KBUILD_CFLAGS += $(call cc-disable-warning, gnu)
KBUILD_CFLAGS += -Wno-pointer-sign
+# Disable relocation relaxation in case the link is not PIE.
+KBUILD_CFLAGS += $(call as-option,-Wa$(comma)-mrelax-relocations=no)

KBUILD_AFLAGS := $(KBUILD_CFLAGS) -D__ASSEMBLY__
GCOV_PROFILE := n

\
 
 \ /
  Last update: 2020-09-21 18:59    [W:0.261 / U:0.176 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site