lkml.org 
[lkml]   [2020]   [May]   [21]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
Date
SubjectRe: [PATCH v2 5/7] mm: parallelize deferred_init_memmap()
On Wed, May 20, 2020 at 6:29 PM Alexander Duyck
<alexander.duyck@gmail.com> wrote:
>
> On Wed, May 20, 2020 at 11:27 AM Daniel Jordan
> <daniel.m.jordan@oracle.com> wrote:
> >
> > Deferred struct page init is a significant bottleneck in kernel boot.
> > Optimizing it maximizes availability for large-memory systems and allows
> > spinning up short-lived VMs as needed without having to leave them
> > running. It also benefits bare metal machines hosting VMs that are
> > sensitive to downtime. In projects such as VMM Fast Restart[1], where
> > guest state is preserved across kexec reboot, it helps prevent
> > application and network timeouts in the guests.
> >
> > Multithread to take full advantage of system memory bandwidth.
> >
> > The maximum number of threads is capped at the number of CPUs on the
> > node because speedups always improve with additional threads on every
> > system tested, and at this phase of boot, the system is otherwise idle
> > and waiting on page init to finish.
> >
> > Helper threads operate on section-aligned ranges to both avoid false
> > sharing when setting the pageblock's migrate type and to avoid accessing
> > uninitialized buddy pages, though max order alignment is enough for the
> > latter.
> >
> > The minimum chunk size is also a section. There was benefit to using
> > multiple threads even on relatively small memory (1G) systems, and this
> > is the smallest size that the alignment allows.
> >
> > The time (milliseconds) is the slowest node to initialize since boot
> > blocks until all nodes finish. intel_pstate is loaded in active mode
> > without hwp and with turbo enabled, and intel_idle is active as well.
> >
> > Intel(R) Xeon(R) Platinum 8167M CPU @ 2.00GHz (Skylake, bare metal)
> > 2 nodes * 26 cores * 2 threads = 104 CPUs
> > 384G/node = 768G memory
> >
> > kernel boot deferred init
> > ------------------------ ------------------------
> > node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> > ( 0) -- 4078.0 ( 9.0) -- 1779.0 ( 8.7)
> > 2% ( 1) 1.4% 4021.3 ( 2.9) 3.4% 1717.7 ( 7.8)
> > 12% ( 6) 35.1% 2644.7 ( 35.3) 80.8% 341.0 ( 35.5)
> > 25% ( 13) 38.7% 2498.0 ( 34.2) 89.1% 193.3 ( 32.3)
> > 37% ( 19) 39.1% 2482.0 ( 25.2) 90.1% 175.3 ( 31.7)
> > 50% ( 26) 38.8% 2495.0 ( 8.7) 89.1% 193.7 ( 3.5)
> > 75% ( 39) 39.2% 2478.0 ( 21.0) 90.3% 172.7 ( 26.7)
> > 100% ( 52) 40.0% 2448.0 ( 2.0) 91.9% 143.3 ( 1.5)
> >
> > Intel(R) Xeon(R) CPU E5-2699C v4 @ 2.20GHz (Broadwell, bare metal)
> > 1 node * 16 cores * 2 threads = 32 CPUs
> > 192G/node = 192G memory
> >
> > kernel boot deferred init
> > ------------------------ ------------------------
> > node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> > ( 0) -- 1996.0 ( 18.0) -- 1104.3 ( 6.7)
> > 3% ( 1) 1.4% 1968.0 ( 3.0) 2.7% 1074.7 ( 9.0)
> > 12% ( 4) 40.1% 1196.0 ( 22.7) 72.4% 305.3 ( 16.8)
> > 25% ( 8) 47.4% 1049.3 ( 17.2) 84.2% 174.0 ( 10.6)
> > 37% ( 12) 48.3% 1032.0 ( 14.9) 86.8% 145.3 ( 2.5)
> > 50% ( 16) 48.9% 1020.3 ( 2.5) 88.0% 133.0 ( 1.7)
> > 75% ( 24) 49.1% 1016.3 ( 8.1) 88.4% 128.0 ( 1.7)
> > 100% ( 32) 49.4% 1009.0 ( 8.5) 88.6% 126.3 ( 0.6)
> >
> > Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, bare metal)
> > 2 nodes * 18 cores * 2 threads = 72 CPUs
> > 128G/node = 256G memory
> >
> > kernel boot deferred init
> > ------------------------ ------------------------
> > node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> > ( 0) -- 1682.7 ( 6.7) -- 630.0 ( 4.6)
> > 3% ( 1) 0.4% 1676.0 ( 2.0) 0.7% 625.3 ( 3.2)
> > 12% ( 4) 25.8% 1249.0 ( 1.0) 68.2% 200.3 ( 1.2)
> > 25% ( 9) 30.0% 1178.0 ( 5.2) 79.7% 128.0 ( 3.5)
> > 37% ( 13) 30.6% 1167.7 ( 3.1) 81.3% 117.7 ( 1.2)
> > 50% ( 18) 30.6% 1167.3 ( 2.3) 81.4% 117.0 ( 1.0)
> > 75% ( 27) 31.0% 1161.3 ( 4.6) 82.5% 110.0 ( 6.9)
> > 100% ( 36) 32.1% 1142.0 ( 3.6) 85.7% 90.0 ( 1.0)
> >
> > AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
> > 1 node * 8 cores * 2 threads = 16 CPUs
> > 64G/node = 64G memory
> >
> > kernel boot deferred init
> > ------------------------ ------------------------
> > node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> > ( 0) -- 1003.7 ( 16.6) -- 243.3 ( 8.1)
> > 6% ( 1) 1.4% 990.0 ( 4.6) 1.2% 240.3 ( 1.5)
> > 12% ( 2) 11.4% 889.3 ( 16.7) 44.5% 135.0 ( 3.0)
> > 25% ( 4) 16.8% 835.3 ( 9.0) 65.8% 83.3 ( 2.5)
> > 37% ( 6) 18.6% 816.7 ( 17.6) 70.4% 72.0 ( 1.0)
> > 50% ( 8) 18.2% 821.0 ( 5.0) 70.7% 71.3 ( 1.2)
> > 75% ( 12) 19.0% 813.3 ( 5.0) 71.8% 68.7 ( 2.1)
> > 100% ( 16) 19.8% 805.3 ( 10.8) 76.4% 57.3 ( 15.9)
> >
> > Server-oriented distros that enable deferred page init sometimes run in
> > small VMs, and they still benefit even though the fraction of boot time
> > saved is smaller:
> >
> > AMD EPYC 7551 32-Core Processor (Zen, kvm guest)
> > 1 node * 2 cores * 2 threads = 4 CPUs
> > 16G/node = 16G memory
> >
> > kernel boot deferred init
> > ------------------------ ------------------------
> > node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> > ( 0) -- 722.3 ( 9.5) -- 50.7 ( 0.6)
> > 25% ( 1) -3.3% 746.3 ( 4.7) -2.0% 51.7 ( 1.2)
> > 50% ( 2) 0.2% 721.0 ( 11.3) 29.6% 35.7 ( 4.9)
> > 75% ( 3) -0.3% 724.3 ( 11.2) 48.7% 26.0 ( 0.0)
> > 100% ( 4) 3.0% 700.3 ( 13.6) 55.9% 22.3 ( 0.6)
> >
> > Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz (Haswell, kvm guest)
> > 1 node * 2 cores * 2 threads = 4 CPUs
> > 14G/node = 14G memory
> >
> > kernel boot deferred init
> > ------------------------ ------------------------
> > node% (thr) speedup time_ms (stdev) speedup time_ms (stdev)
> > ( 0) -- 673.0 ( 6.9) -- 57.0 ( 1.0)
> > 25% ( 1) -0.6% 677.3 ( 19.8) 1.8% 56.0 ( 1.0)
> > 50% ( 2) 3.4% 650.0 ( 3.6) 36.8% 36.0 ( 5.2)
> > 75% ( 3) 4.2% 644.7 ( 7.6) 56.1% 25.0 ( 1.0)
> > 100% ( 4) 5.3% 637.0 ( 5.6) 63.2% 21.0 ( 0.0)
> >
> > On Josh's 96-CPU and 192G memory system:
> >
> > Without this patch series:
> > [ 0.487132] node 0 initialised, 23398907 pages in 292ms
> > [ 0.499132] node 1 initialised, 24189223 pages in 304ms
> > ...
> > [ 0.629376] Run /sbin/init as init process
> >
> > With this patch series:
> > [ 0.227868] node 0 initialised, 23398907 pages in 28ms
> > [ 0.230019] node 1 initialised, 24189223 pages in 28ms
> > ...
> > [ 0.361069] Run /sbin/init as init process
> >
> > [1] https://static.sched.com/hosted_files/kvmforum2019/66/VMM-fast-restart_kvmforum2019.pdf
> >
> > Signed-off-by: Daniel Jordan <daniel.m.jordan@oracle.com>
> > ---
> > mm/Kconfig | 6 ++---
> > mm/page_alloc.c | 60 ++++++++++++++++++++++++++++++++++++++++++++-----
> > 2 files changed, 58 insertions(+), 8 deletions(-)
> >
> > diff --git a/mm/Kconfig b/mm/Kconfig
> > index c1acc34c1c358..04c1da3f9f44c 100644
> > --- a/mm/Kconfig
> > +++ b/mm/Kconfig
> > @@ -750,13 +750,13 @@ config DEFERRED_STRUCT_PAGE_INIT
> > depends on SPARSEMEM
> > depends on !NEED_PER_CPU_KM
> > depends on 64BIT
> > + select PADATA
> > help
> > Ordinarily all struct pages are initialised during early boot in a
> > single thread. On very large machines this can take a considerable
> > amount of time. If this option is set, large machines will bring up
> > - a subset of memmap at boot and then initialise the rest in parallel
> > - by starting one-off "pgdatinitX" kernel thread for each node X. This
> > - has a potential performance impact on processes running early in the
> > + a subset of memmap at boot and then initialise the rest in parallel.
> > + This has a potential performance impact on tasks running early in the
> > lifetime of the system until these kthreads finish the
> > initialisation.
> >
> > diff --git a/mm/page_alloc.c b/mm/page_alloc.c
> > index d0c0d9364aa6d..9cb780e8dec78 100644
> > --- a/mm/page_alloc.c
> > +++ b/mm/page_alloc.c
> > @@ -68,6 +68,7 @@
> > #include <linux/lockdep.h>
> > #include <linux/nmi.h>
> > #include <linux/psi.h>
> > +#include <linux/padata.h>
> >
> > #include <asm/sections.h>
> > #include <asm/tlbflush.h>
> > @@ -1814,16 +1815,44 @@ deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
> > return nr_pages;
> > }
> >
> > +struct definit_args {
> > + struct zone *zone;
> > + atomic_long_t nr_pages;
> > +};
> > +
> > +static void __init
> > +deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
> > + void *arg)
> > +{
> > + unsigned long spfn, epfn, nr_pages = 0;
> > + struct definit_args *args = arg;
> > + struct zone *zone = args->zone;
> > + u64 i;
> > +
> > + deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
> > +
> > + /*
> > + * Initialize and free pages in MAX_ORDER sized increments so that we
> > + * can avoid introducing any issues with the buddy allocator.
> > + */
> > + while (spfn < end_pfn) {
> > + nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
> > + cond_resched();
> > + }
> > +
> > + atomic_long_add(nr_pages, &args->nr_pages);
> > +}
> > +
>
> Personally I would get rid of nr_pages entirely. It isn't worth the
> cache thrash to have this atomic variable bouncing around. You could
> probably just have this function return void since all nr_pages is
> used for is a pr_info statement at the end of the initialization
> which will be completely useless now anyway since we really have the
> threads running in parallel anyway.
>
> We only really need the nr_pages logic in deferred_grow_zone in order
> to track if we have freed enough pages to allow us to go back to what
> we were doing.
>
> > /* Initialise remaining memory on a node */
> > static int __init deferred_init_memmap(void *data)
> > {
> > pg_data_t *pgdat = data;
> > const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
> > unsigned long spfn = 0, epfn = 0, nr_pages = 0;
> > - unsigned long first_init_pfn, flags;
> > + unsigned long first_init_pfn, flags, epfn_align;
> > unsigned long start = jiffies;
> > struct zone *zone;
> > - int zid;
> > + int zid, max_threads;
> > u64 i;
> >
> > /* Bind memory initialisation thread to a local node if possible */
> > @@ -1863,11 +1892,32 @@ static int __init deferred_init_memmap(void *data)
> > goto zone_empty;
> >
> > /*
> > - * Initialize and free pages in MAX_ORDER sized increments so
> > - * that we can avoid introducing any issues with the buddy
> > - * allocator.
> > + * More CPUs always led to greater speedups on tested systems, up to
> > + * all the nodes' CPUs. Use all since the system is otherwise idle now.
> > */
> > + max_threads = max(cpumask_weight(cpumask), 1u);
> > +
> > while (spfn < epfn) {
> > + epfn_align = ALIGN_DOWN(epfn, PAGES_PER_SECTION);
> > +
> > + if (IS_ALIGNED(spfn, PAGES_PER_SECTION) &&
> > + epfn_align - spfn >= PAGES_PER_SECTION) {
> > + struct definit_args arg = { zone, ATOMIC_LONG_INIT(0) };
> > + struct padata_mt_job job = {
> > + .thread_fn = deferred_init_memmap_chunk,
> > + .fn_arg = &arg,
> > + .start = spfn,
> > + .size = epfn_align - spfn,
> > + .align = PAGES_PER_SECTION,
> > + .min_chunk = PAGES_PER_SECTION,
> > + .max_threads = max_threads,
> > + };
> > +
> > + padata_do_multithreaded(&job);
> > + nr_pages += atomic_long_read(&arg.nr_pages);
> > + spfn = epfn_align;
> > + }
> > +
> > nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
> > cond_resched();
> > }
>
> This doesn't look right. You are basically adding threads in addition
> to calls to deferred_init_maxorder. In addition you are spawning one
> job per section instead of per range. Really you should be going for
> something more along the lines of:
>
> while (spfn < epfn) {
> unsigned long epfn_align = ALIGN(epfn,
> PAGE_PER_SECTION);
> struct definit_args arg = { zone, ATOMIC_LONG_INIT(0)
> };
> struct padata_mt_job job = {
> .thread_fn = deferred_init_memmap_chunk,
> .fn_arg = &arg,
> .start = spfn,
> .size = epfn_align - spfn,
> .align = PAGES_PER_SECTION,
> .min_chunk = PAGES_PER_SECTION,
> .max_threads = max_threads,
> };
>
> padata_do_multithreaded(&job);
>
> for_each_free_mem_pfn_range_in_zone_from(i, zone,
> spfn, epfn) {
> if (epfn_align <= spfn)
> break;
> }
> }
>

So I was thinking about my suggestion further and the loop at the end
isn't quite correct as I believe it could lead to gaps. The loop on
the end should probably be:
for_each_free_mem_pfn_range_in_zone_from(i, zone, spfn, epfn) {
if (epfn <= epfn_align)
continue;
if (spfn < epfn_align)
spfn = epfn_align;
break;
}

That would generate a new range where epfn_align has actually ended
and there is a range of new PFNs to process.

Thanks.

- Alex

\
 
 \ /
  Last update: 2020-05-21 17:01    [W:0.112 / U:1.408 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site