lkml.org 
[lkml]   [2020]   [Mar]   [3]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
Subject[PATCH v2] lib/refcount: Document interaction with PID_MAX_LIMIT
From
Document the circumstances under which refcount_t's saturation mechanism
works deterministically.

Signed-off-by: Jann Horn <jannh@google.com>
---

Notes:
v2:
- write down the math (Kees)

include/linux/refcount.h | 23 ++++++++++++++++++-----
1 file changed, 18 insertions(+), 5 deletions(-)

diff --git a/include/linux/refcount.h b/include/linux/refcount.h
index 0ac50cf62d062..0e3ee25eb156a 100644
--- a/include/linux/refcount.h
+++ b/include/linux/refcount.h
@@ -38,11 +38,24 @@
* atomic operations, then the count will continue to edge closer to 0. If it
* reaches a value of 1 before /any/ of the threads reset it to the saturated
* value, then a concurrent refcount_dec_and_test() may erroneously free the
- * underlying object. Given the precise timing details involved with the
- * round-robin scheduling of each thread manipulating the refcount and the need
- * to hit the race multiple times in succession, there doesn't appear to be a
- * practical avenue of attack even if using refcount_add() operations with
- * larger increments.
+ * underlying object.
+ * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently
+ * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK).
+ * With the current PID limit, if no batched refcounting operations are used and
+ * the attacker can't repeatedly trigger kernel oopses in the middle of refcount
+ * operations, this makes it impossible for a saturated refcount to leave the
+ * saturation range, even if it is possible for multiple uses of the same
+ * refcount to nest in the context of a single task:
+ *
+ * (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT =
+ * 0x40000000 / 0x400000 = 0x100 = 256
+ *
+ * If hundreds of references are added/removed with a single refcounting
+ * operation, it may potentially be possible to leave the saturation range; but
+ * given the precise timing details involved with the round-robin scheduling of
+ * each thread manipulating the refcount and the need to hit the race multiple
+ * times in succession, there doesn't appear to be a practical avenue of attack
+ * even if using refcount_add() operations with larger increments.
*
* Memory ordering
* ===============
base-commit: 98d54f81e36ba3bf92172791eba5ca5bd813989b
--
2.25.0.265.gbab2e86ba0-goog

\
 
 \ /
  Last update: 2020-03-03 11:55    [W:0.193 / U:0.012 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site