lkml.org 
[lkml]   [2020]   [Feb]   [27]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH 4.14 197/237] Revert "ipc,sem: remove uneeded sem_undo_list lock usage in exit_sem()"
Date
From: Ioanna Alifieraki <ioanna-maria.alifieraki@canonical.com>

commit edf28f4061afe4c2d9eb1c3323d90e882c1d6800 upstream.

This reverts commit a97955844807e327df11aa33869009d14d6b7de0.

Commit a97955844807 ("ipc,sem: remove uneeded sem_undo_list lock usage
in exit_sem()") removes a lock that is needed. This leads to a process
looping infinitely in exit_sem() and can also lead to a crash. There is
a reproducer available in [1] and with the commit reverted the issue
does not reproduce anymore.

Using the reproducer found in [1] is fairly easy to reach a point where
one of the child processes is looping infinitely in exit_sem between
for(;;) and if (semid == -1) block, while it's trying to free its last
sem_undo structure which has already been freed by freeary().

Each sem_undo struct is on two lists: one per semaphore set (list_id)
and one per process (list_proc). The list_id list tracks undos by
semaphore set, and the list_proc by process.

Undo structures are removed either by freeary() or by exit_sem(). The
freeary function is invoked when the user invokes a syscall to remove a
semaphore set. During this operation freeary() traverses the list_id
associated with the semaphore set and removes the undo structures from
both the list_id and list_proc lists.

For this case, exit_sem() is called at process exit. Each process
contains a struct sem_undo_list (referred to as "ulp") which contains
the head for the list_proc list. When the process exits, exit_sem()
traverses this list to remove each sem_undo struct. As in freeary(),
whenever a sem_undo struct is removed from list_proc, it is also removed
from the list_id list.

Removing elements from list_id is safe for both exit_sem() and freeary()
due to sem_lock(). Removing elements from list_proc is not safe;
freeary() locks &un->ulp->lock when it performs
list_del_rcu(&un->list_proc) but exit_sem() does not (locking was
removed by commit a97955844807 ("ipc,sem: remove uneeded sem_undo_list
lock usage in exit_sem()").

This can result in the following situation while executing the
reproducer [1] : Consider a child process in exit_sem() and the parent
in freeary() (because of semctl(sid[i], NSEM, IPC_RMID)).

- The list_proc for the child contains the last two undo structs A and
B (the rest have been removed either by exit_sem() or freeary()).

- The semid for A is 1 and semid for B is 2.

- exit_sem() removes A and at the same time freeary() removes B.

- Since A and B have different semid sem_lock() will acquire different
locks for each process and both can proceed.

The bug is that they remove A and B from the same list_proc at the same
time because only freeary() acquires the ulp lock. When exit_sem()
removes A it makes ulp->list_proc.next to point at B and at the same
time freeary() removes B setting B->semid=-1.

At the next iteration of for(;;) loop exit_sem() will try to remove B.

The only way to break from for(;;) is for (&un->list_proc ==
&ulp->list_proc) to be true which is not. Then exit_sem() will check if
B->semid=-1 which is and will continue looping in for(;;) until the
memory for B is reallocated and the value at B->semid is changed.

At that point, exit_sem() will crash attempting to unlink B from the
lists (this can be easily triggered by running the reproducer [1] a
second time).

To prove this scenario instrumentation was added to keep information
about each sem_undo (un) struct that is removed per process and per
semaphore set (sma).

CPU0 CPU1
[caller holds sem_lock(sma for A)] ...
freeary() exit_sem()
... ...
... sem_lock(sma for B)
spin_lock(A->ulp->lock) ...
list_del_rcu(un_A->list_proc) list_del_rcu(un_B->list_proc)

Undo structures A and B have different semid and sem_lock() operations
proceed. However they belong to the same list_proc list and they are
removed at the same time. This results into ulp->list_proc.next
pointing to the address of B which is already removed.

After reverting commit a97955844807 ("ipc,sem: remove uneeded
sem_undo_list lock usage in exit_sem()") the issue was no longer
reproducible.

[1] https://bugzilla.redhat.com/show_bug.cgi?id=1694779

Link: http://lkml.kernel.org/r/20191211191318.11860-1-ioanna-maria.alifieraki@canonical.com
Fixes: a97955844807 ("ipc,sem: remove uneeded sem_undo_list lock usage in exit_sem()")
Signed-off-by: Ioanna Alifieraki <ioanna-maria.alifieraki@canonical.com>
Acked-by: Manfred Spraul <manfred@colorfullife.com>
Acked-by: Herton R. Krzesinski <herton@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: <malat@debian.org>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Jay Vosburgh <jay.vosburgh@canonical.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

---
ipc/sem.c | 6 ++----
1 file changed, 2 insertions(+), 4 deletions(-)

--- a/ipc/sem.c
+++ b/ipc/sem.c
@@ -2248,11 +2248,9 @@ void exit_sem(struct task_struct *tsk)
ipc_assert_locked_object(&sma->sem_perm);
list_del(&un->list_id);

- /* we are the last process using this ulp, acquiring ulp->lock
- * isn't required. Besides that, we are also protected against
- * IPC_RMID as we hold sma->sem_perm lock now
- */
+ spin_lock(&ulp->lock);
list_del_rcu(&un->list_proc);
+ spin_unlock(&ulp->lock);

/* perform adjustments registered in un */
for (i = 0; i < sma->sem_nsems; i++) {

\
 
 \ /
  Last update: 2020-02-27 15:03    [W:0.876 / U:0.108 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site