lkml.org 
[lkml]   [2020]   [Dec]   [4]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
SubjectRe: [RFC v2 1/2] [NEEDS HELP] x86/mm: Handle unlazying membarrier core sync in the arch code
Excerpts from Andy Lutomirski's message of December 4, 2020 3:26 pm:
> The core scheduler isn't a great place for
> membarrier_mm_sync_core_before_usermode() -- the core scheduler doesn't
> actually know whether we are lazy. With the old code, if a CPU is
> running a membarrier-registered task, goes idle, gets unlazied via a TLB
> shootdown IPI, and switches back to the membarrier-registered task, it
> will do an unnecessary core sync.
>
> Conveniently, x86 is the only architecture that does anything in this
> hook, so we can just move the code.

This should go on top of my series that adds the exit_lazy_mm call
and switches x86 over, at least.

> XXX: there are some comments in swich_mm_irqs_off() that seem to be
> trying to document what barriers are expected, and it's not clear to me
> that these barriers are actually present in all paths through the
> code. So I think this change makes the code more comprehensible and
> has no effect on the code's correctness, but I'm not at all convinced
> that the code is correct.
>
> Signed-off-by: Andy Lutomirski <luto@kernel.org>
> ---
> arch/x86/mm/tlb.c | 17 ++++++++++++++++-
> kernel/sched/core.c | 14 +++++++-------
> 2 files changed, 23 insertions(+), 8 deletions(-)
>
> diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
> index 3338a1feccf9..23df035b80e8 100644
> --- a/arch/x86/mm/tlb.c
> +++ b/arch/x86/mm/tlb.c
> @@ -8,6 +8,7 @@
> #include <linux/export.h>
> #include <linux/cpu.h>
> #include <linux/debugfs.h>
> +#include <linux/sched/mm.h>
>
> #include <asm/tlbflush.h>
> #include <asm/mmu_context.h>
> @@ -496,6 +497,8 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
> * from one thread in a process to another thread in the same
> * process. No TLB flush required.
> */
> +
> + // XXX: why is this okay wrt membarrier?
> if (!was_lazy)
> return;
>
> @@ -508,12 +511,24 @@ void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
> smp_mb();
> next_tlb_gen = atomic64_read(&next->context.tlb_gen);
> if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
> - next_tlb_gen)
> + next_tlb_gen) {
> + /*
> + * We're reactivating an mm, and membarrier might
> + * need to serialize. Tell membarrier.
> + */
> +
> + // XXX: I can't understand the logic in
> + // membarrier_mm_sync_core_before_usermode(). What's
> + // the mm check for?

Writing CR3 is serializing, apparently. Another x86ism that gets
commented and moved into arch/x86 with my patch.


> + membarrier_mm_sync_core_before_usermode(next);
> return;
> + }
>
> /*
> * TLB contents went out of date while we were in lazy
> * mode. Fall through to the TLB switching code below.
> + * No need for an explicit membarrier invocation -- the CR3
> + * write will serialize.
> */
> new_asid = prev_asid;
> need_flush = true;
> diff --git a/kernel/sched/core.c b/kernel/sched/core.c
> index 2d95dc3f4644..6c4b76147166 100644
> --- a/kernel/sched/core.c
> +++ b/kernel/sched/core.c
> @@ -3619,22 +3619,22 @@ static struct rq *finish_task_switch(struct task_struct *prev)
> kcov_finish_switch(current);
>
> fire_sched_in_preempt_notifiers(current);
> +
> /*
> * When switching through a kernel thread, the loop in
> * membarrier_{private,global}_expedited() may have observed that
> * kernel thread and not issued an IPI. It is therefore possible to
> * schedule between user->kernel->user threads without passing though
> * switch_mm(). Membarrier requires a barrier after storing to
> - * rq->curr, before returning to userspace, so provide them here:
> + * rq->curr, before returning to userspace, and mmdrop() provides
> + * this barrier.
> *
> - * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
> - * provided by mmdrop(),
> - * - a sync_core for SYNC_CORE.
> + * XXX: I don't think mmdrop() actually does this. There's no
> + * smp_mb__before/after_atomic() in there.

mmdrop definitely does provide a full barrier.

> */
> - if (mm) {
> - membarrier_mm_sync_core_before_usermode(mm);
> + if (mm)
> mmdrop(mm);
> - }
> +
> if (unlikely(prev_state == TASK_DEAD)) {
> if (prev->sched_class->task_dead)
> prev->sched_class->task_dead(prev);
> --
> 2.28.0
>
>

\
 
 \ /
  Last update: 2020-12-04 08:10    [W:0.083 / U:0.052 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site