lkml.org 
[lkml]   [2020]   [Nov]   [12]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
From
Subject[PATCH] sched/core: trivial: Fix typos in comments
Signed-off-by: Tal Zussman <tz2294@columbia.edu>
---
kernel/sched/core.c | 32 ++++++++++++++++----------------
1 file changed, 16 insertions(+), 16 deletions(-)

diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index d2003a7d5ab5..f30f28b91833 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -97,7 +97,7 @@ int sysctl_sched_rt_runtime = 950000;
*
* Normal scheduling state is serialized by rq->lock. __schedule() takes the
* local CPU's rq->lock, it optionally removes the task from the runqueue and
- * always looks at the local rq data structures to find the most elegible task
+ * always looks at the local rq data structures to find the most eligible task
* to run next.
*
* Task enqueue is also under rq->lock, possibly taken from another CPU.
@@ -518,7 +518,7 @@ static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)

/*
* Atomically grab the task, if ->wake_q is !nil already it means
- * its already queued (either by us or someone else) and will get the
+ * it's already queued (either by us or someone else) and will get the
* wakeup due to that.
*
* In order to ensure that a pending wakeup will observe our pending
@@ -769,7 +769,7 @@ bool sched_can_stop_tick(struct rq *rq)
return false;

/*
- * If there are more than one RR tasks, we need the tick to effect the
+ * If there are more than one RR tasks, we need the tick to affect the
* actual RR behaviour.
*/
if (rq->rt.rr_nr_running) {
@@ -1187,14 +1187,14 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
* accounting was performed at enqueue time and we can just return
* here.
*
- * Need to be careful of the following enqeueue/dequeue ordering
+ * Need to be careful of the following enqueue/dequeue ordering
* problem too
*
* enqueue(taskA)
* // sched_uclamp_used gets enabled
* enqueue(taskB)
* dequeue(taskA)
- * // Must not decrement bukcet->tasks here
+ * // Must not decrement bucket->tasks here
* dequeue(taskB)
*
* where we could end up with stale data in uc_se and
@@ -2465,7 +2465,7 @@ static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
- * Our task @p is fully woken up and running; so its safe to
+ * Our task @p is fully woken up and running; so it's safe to
* drop the rq->lock, hereafter rq is only used for statistics.
*/
rq_unpin_lock(rq, rf);
@@ -2952,7 +2952,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)

/*
* If the owning (remote) CPU is still in the middle of schedule() with
- * this task as prev, wait until its done referencing the task.
+ * this task as prev, wait until it's done referencing the task.
*
* Pairs with the smp_store_release() in finish_task().
*
@@ -3356,7 +3356,7 @@ void wake_up_new_task(struct task_struct *p)
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
- * Nothing relies on rq->lock after this, so its fine to
+ * Nothing relies on rq->lock after this, so it's fine to
* drop it.
*/
rq_unpin_lock(rq, &rf);
@@ -3836,7 +3836,7 @@ unsigned long nr_iowait_cpu(int cpu)
}

/*
- * IO-wait accounting, and how its mostly bollocks (on SMP).
+ * IO-wait accounting, and how it's mostly bollocks (on SMP).
*
* The idea behind IO-wait account is to account the idle time that we could
* have spend running if it were not for IO. That is, if we were to improve the
@@ -4331,7 +4331,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
/*
* Optimization: we know that if all tasks are in the fair class we can
* call that function directly, but only if the @prev task wasn't of a
- * higher scheduling class, because otherwise those loose the
+ * higher scheduling class, because otherwise those lose the
* opportunity to pull in more work from other CPUs.
*/
if (likely(prev->sched_class <= &fair_sched_class &&
@@ -4852,7 +4852,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
* right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
* ensure a task is de-boosted (pi_task is set to NULL) before the
* task is allowed to run again (and can exit). This ensures the pointer
- * points to a blocked task -- which guaratees the task is present.
+ * points to a blocked task -- which guarantees the task is present.
*/
p->pi_top_task = pi_task;

@@ -4968,7 +4968,7 @@ void set_user_nice(struct task_struct *p, long nice)
/*
* The RT priorities are set via sched_setscheduler(), but we still
* allow the 'normal' nice value to be set - but as expected
- * it wont have any effect on scheduling until the task is
+ * it won't have any effect on scheduling until the task is
* SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
*/
if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
@@ -6159,7 +6159,7 @@ EXPORT_SYMBOL(__cond_resched_lock);
*
* The scheduler is at all times free to pick the calling task as the most
* eligible task to run, if removing the yield() call from your code breaks
- * it, its already broken.
+ * it, it's already broken.
*
* Typical broken usage is:
*
@@ -6532,7 +6532,7 @@ void init_idle(struct task_struct *idle, int cpu)

#ifdef CONFIG_SMP
/*
- * Its possible that init_idle() gets called multiple times on a task,
+ * It's possible that init_idle() gets called multiple times on a task,
* in that case do_set_cpus_allowed() will not do the right thing.
*
* And since this is boot we can forgo the serialization.
@@ -6725,7 +6725,7 @@ static struct task_struct *__pick_migrate_task(struct rq *rq)
* Migrate all tasks from the rq, sleeping tasks will be migrated by
* try_to_wake_up()->select_task_rq().
*
- * Called with rq->lock held even though we'er in stop_machine() and
+ * Called with rq->lock held even though we're in stop_machine() and
* there's no concurrency possible, we hold the required locks anyway
* because of lock validation efforts.
*/
@@ -7660,7 +7660,7 @@ static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
return -EINVAL;
#endif
/*
- * Serialize against wake_up_new_task() such that if its
+ * Serialize against wake_up_new_task() such that if it's
* running, we're sure to observe its full state.
*/
raw_spin_lock_irq(&task->pi_lock);
--
2.20.1
\
 
 \ /
  Last update: 2020-11-13 01:52    [W:0.038 / U:0.020 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site