[lkml]   [2019]   [Jun]   [21]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
Messages in this thread
SubjectRe: [RFC PATCH 00/28] Removing struct page from P2PDMA
On Fri, Jun 21, 2019 at 10:47 AM Jason Gunthorpe <> wrote:
> On Thu, Jun 20, 2019 at 01:18:13PM -0700, Dan Williams wrote:
> > > This P2P is quite distinct from DAX as the struct page* would point to
> > > non-cacheable weird memory that few struct page users would even be
> > > able to work with, while I understand DAX use cases focused on CPU
> > > cache coherent memory, and filesystem involvement.
> >
> > What I'm poking at is whether this block layer capability can pick up
> > users outside of RDMA, more on this below...
> The generic capability is to do a transfer through the block layer and
> scatter/gather the resulting data to some PCIe BAR memory. Currently
> the block layer can only scatter/gather data into CPU cache coherent
> memory.
> We know of several useful places to put PCIe BAR memory already:
> - On a GPU (or FPGA, acclerator, etc), ie the GB's of GPU private
> memory that is standard these days.
> - On a NVMe CMB. This lets the NVMe drive avoid DMA entirely
> - On a RDMA NIC. Mellanox NICs have a small amount of BAR memory that
> can be used like a CMB and avoids a DMA
> RDMA doesn't really get so involved here, except that RDMA is often
> the prefered way to source/sink the data buffers after the block layer has
> scatter/gathered to them. (and of course RDMA is often for a block
> driver, ie NMVe over fabrics)
> > > > My primary concern with this is that ascribes a level of generality
> > > > that just isn't there for peer-to-peer dma operations. "Peer"
> > > > addresses are not "DMA" addresses, and the rules about what can and
> > > > can't do peer-DMA are not generically known to the block layer.
> > >
> > > ?? The P2P infrastructure produces a DMA bus address for the
> > > initiating device that is is absolutely a DMA address. There is some
> > > intermediate CPU centric representation, but after mapping it is the
> > > same as any other DMA bus address.
> >
> > Right, this goes back to the confusion caused by the hardware / bus /
> > address that a dma-engine would consume directly, and Linux "DMA"
> > address as a device-specific translation of host memory.
> I don't think there is a confusion :) Logan explained it, the
> dma_addr_t is always the thing you program into the DMA engine of the
> device it was created for, and this changes nothing about that.

Yup, Logan and I already settled that point on our last exchange and
offered to make that clearer in the changelog.

 \ /
  Last update: 2019-06-21 19:54    [W:0.097 / U:15.852 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site