lkml.org 
[lkml]   [2019]   [Apr]   [15]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH 23/57] docs: netlabel: convert it to ReST
Date
Convert netlabel documentation to ReST.

This was trivial: just add proper title markups.

Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
---
Documentation/netlabel/cipso_ipv4.txt | 19 +++++++++++++------
Documentation/netlabel/introduction.txt | 16 +++++++++++-----
Documentation/netlabel/lsm_interface.txt | 16 +++++++++++-----
3 files changed, 35 insertions(+), 16 deletions(-)

diff --git a/Documentation/netlabel/cipso_ipv4.txt b/Documentation/netlabel/cipso_ipv4.txt
index a6075481fd60..cbd3f3231221 100644
--- a/Documentation/netlabel/cipso_ipv4.txt
+++ b/Documentation/netlabel/cipso_ipv4.txt
@@ -1,10 +1,13 @@
+===================================
NetLabel CIPSO/IPv4 Protocol Engine
-==============================================================================
+===================================
+
Paul Moore, paul.moore@hp.com

May 17, 2006

- * Overview
+Overview
+========

The NetLabel CIPSO/IPv4 protocol engine is based on the IETF Commercial
IP Security Option (CIPSO) draft from July 16, 1992. A copy of this
@@ -13,7 +16,8 @@ draft can be found in this directory
it to an RFC standard it has become a de-facto standard for labeled
networking and is used in many trusted operating systems.

- * Outbound Packet Processing
+Outbound Packet Processing
+==========================

The CIPSO/IPv4 protocol engine applies the CIPSO IP option to packets by
adding the CIPSO label to the socket. This causes all packets leaving the
@@ -24,7 +28,8 @@ label by using the NetLabel security module API; if the NetLabel "domain" is
configured to use CIPSO for packet labeling then a CIPSO IP option will be
generated and attached to the socket.

- * Inbound Packet Processing
+Inbound Packet Processing
+=========================

The CIPSO/IPv4 protocol engine validates every CIPSO IP option it finds at the
IP layer without any special handling required by the LSM. However, in order
@@ -33,7 +38,8 @@ NetLabel security module API to extract the security attributes of the packet.
This is typically done at the socket layer using the 'socket_sock_rcv_skb()'
LSM hook.

- * Label Translation
+Label Translation
+=================

The CIPSO/IPv4 protocol engine contains a mechanism to translate CIPSO security
attributes such as sensitivity level and category to values which are
@@ -42,7 +48,8 @@ Domain Of Interpretation (DOI) definition and are configured through the
NetLabel user space communication layer. Each DOI definition can have a
different security attribute mapping table.

- * Label Translation Cache
+Label Translation Cache
+=======================

The NetLabel system provides a framework for caching security attribute
mappings from the network labels to the corresponding LSM identifiers. The
diff --git a/Documentation/netlabel/introduction.txt b/Documentation/netlabel/introduction.txt
index 3caf77bcff0f..9333bbb0adc1 100644
--- a/Documentation/netlabel/introduction.txt
+++ b/Documentation/netlabel/introduction.txt
@@ -1,10 +1,13 @@
+=====================
NetLabel Introduction
-==============================================================================
+=====================
+
Paul Moore, paul.moore@hp.com

August 2, 2006

- * Overview
+Overview
+========

NetLabel is a mechanism which can be used by kernel security modules to attach
security attributes to outgoing network packets generated from user space
@@ -12,7 +15,8 @@ applications and read security attributes from incoming network packets. It
is composed of three main components, the protocol engines, the communication
layer, and the kernel security module API.

- * Protocol Engines
+Protocol Engines
+================

The protocol engines are responsible for both applying and retrieving the
network packet's security attributes. If any translation between the network
@@ -24,7 +28,8 @@ the NetLabel kernel security module API described below.
Detailed information about each NetLabel protocol engine can be found in this
directory.

- * Communication Layer
+Communication Layer
+===================

The communication layer exists to allow NetLabel configuration and monitoring
from user space. The NetLabel communication layer uses a message based
@@ -33,7 +38,8 @@ formatting of these NetLabel messages as well as the Generic NETLINK family
names can be found in the 'net/netlabel/' directory as comments in the
header files as well as in 'include/net/netlabel.h'.

- * Security Module API
+Security Module API
+===================

The purpose of the NetLabel security module API is to provide a protocol
independent interface to the underlying NetLabel protocol engines. In addition
diff --git a/Documentation/netlabel/lsm_interface.txt b/Documentation/netlabel/lsm_interface.txt
index 638c74f7de7f..026fc267f798 100644
--- a/Documentation/netlabel/lsm_interface.txt
+++ b/Documentation/netlabel/lsm_interface.txt
@@ -1,10 +1,13 @@
+========================================
NetLabel Linux Security Module Interface
-==============================================================================
+========================================
+
Paul Moore, paul.moore@hp.com

May 17, 2006

- * Overview
+Overview
+========

NetLabel is a mechanism which can set and retrieve security attributes from
network packets. It is intended to be used by LSM developers who want to make
@@ -12,7 +15,8 @@ use of a common code base for several different packet labeling protocols.
The NetLabel security module API is defined in 'include/net/netlabel.h' but a
brief overview is given below.

- * NetLabel Security Attributes
+NetLabel Security Attributes
+============================

Since NetLabel supports multiple different packet labeling protocols and LSMs
it uses the concept of security attributes to refer to the packet's security
@@ -24,7 +28,8 @@ configuration. It is up to the LSM developer to translate the NetLabel
security attributes into whatever security identifiers are in use for their
particular LSM.

- * NetLabel LSM Protocol Operations
+NetLabel LSM Protocol Operations
+================================

These are the functions which allow the LSM developer to manipulate the labels
on outgoing packets as well as read the labels on incoming packets. Functions
@@ -32,7 +37,8 @@ exist to operate both on sockets as well as the sk_buffs directly. These high
level functions are translated into low level protocol operations based on how
the administrator has configured the NetLabel subsystem.

- * NetLabel Label Mapping Cache Operations
+NetLabel Label Mapping Cache Operations
+=======================================

Depending on the exact configuration, translation between the network packet
label and the internal LSM security identifier can be time consuming. The
--
2.20.1
\
 
 \ /
  Last update: 2019-04-16 05:00    [W:0.195 / U:10.788 seconds]
©2003-2018 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site