lkml.org 
[lkml]   [2018]   [May]   [30]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
From
SubjectRe: [PATCH] lib/bch: Remove VLA usage
On Tue, May 29, 2018 at 03:42:07PM -0700, Kees Cook wrote:
> In the quest to remove all stack VLA usage from the kernel[1], this removes
> the on-stack working buffers in favor of pre-allocated working buffers
> (which were already used in other places). Since these routines must
> already be serialized (since they work on bch->ecc_buf), adding the usage
> of bch->ecc_work would be similarly safe. Additionally, since "max m" is
> only 15, this was adjusted to just use a fixed size array in those cases.

Hi Kees,

Using an on-stack buffer instead of a pre-allocated buffer was done initially
for performance reasons. For "usual" (m,t) values (for instance m=13, t=4),
there is a huge performance difference between the on-stack buffer version and
the kmalloc version. I didn't investigate the reason for this, but I ran a
quick benchmark on my PC:

little-endian, type sizes: int=4 long=8 longlong=8
cpu: Intel(R) Core(TM) i5 CPU 650 @ 3.20GHz
calibration: iter=4.9143µs niter=2034 nsamples=200 m=13 t=4

Buffer allocation | Encoding throughput (Mbit/s)
---------------------------------------------------
on-stack, VLA | 3988
on-stack, fixed | 4494
kmalloc | 1967

The first line shows the performance of the current code, using a VLA.
The second line shows the performance when r[] is allocated on the stack with
a fixed, constant size (the maximum allowed value).
The third line shows the performance when r is a pre-allocated working buffer.

In fact, when using a pre-allocated buffer there is no need to introduce 'ecc_work':
you can directly point 'r' to bch->ecc_buf and remove memcpy() surrounding the
'while (mlen--)' loop. Everything happens inside the 'bch->ecc_buf' buffer.
But with a big performance penalty. Looks like declaring a temporary buffer on the
stack to store ECC values allows GCC to do a better job at optimizing the loop.

So rather than introducing 'ecc_work', I suggest we compute the maximum allowed
size for r[] and use that:

sizeof(r) = sizeof(uint32_t)*(l+1)
l+1 = BCH_ECC_WORDS(bch) = DIV_ROUND_UP(m*t, 32)

We also know that:

m*t < 2^m - 1 (ECC maximum size)

therefore:

l+1 < DIV_ROUND_UP(2^m - 1, 32) < 2^(m-5)

So instead of 'uint32_t r[l+1]' we could declare 'uint32_t r[1 << (BCH_MAX_M-5)]'.
And replace 'sizeof(r)' with 'sizeof(*bch->ecc_buf)*(l+1)' in memset/memcpy calls.
In practice the actual maximum size of r[] is (1 << (15-5))*sizeof(uint32_t) = 4096 bytes.

What do you think ?
--
Ivan





> [1] https://lkml.kernel.org/r/CA+55aFzCG-zNmZwX4A2FQpadafLfEzK6CC=qPXydAacU1RqZWA@mail.gmail.com
>
> Signed-off-by: Kees Cook <keescook@chromium.org>
> ---
> This is directed at linux-mtd because it's the only user of this library
> and it's how it originally entered the kernel tree...
> ---
> include/linux/bch.h | 4 ++--
> lib/bch.c | 27 +++++++++++++++------------
> 2 files changed, 17 insertions(+), 14 deletions(-)
>
> diff --git a/include/linux/bch.h b/include/linux/bch.h
> index 295b4ef153bb..4d46e6a73319 100644
> --- a/include/linux/bch.h
> +++ b/include/linux/bch.h
> @@ -39,7 +39,7 @@
> * @a_log_tab: Galois field GF(2^m) log lookup table
> * @mod8_tab: remainder generator polynomial lookup tables
> * @ecc_buf: ecc parity words buffer
> - * @ecc_buf2: ecc parity words buffer
> + * @ecc_work: ecc parity words working buffer
> * @xi_tab: GF(2^m) base for solving degree 2 polynomial roots
> * @syn: syndrome buffer
> * @cache: log-based polynomial representation buffer
> @@ -57,7 +57,7 @@ struct bch_control {
> uint16_t *a_log_tab;
> uint32_t *mod8_tab;
> uint32_t *ecc_buf;
> - uint32_t *ecc_buf2;
> + uint32_t *ecc_work;
> unsigned int *xi_tab;
> unsigned int *syn;
> int *cache;
> diff --git a/lib/bch.c b/lib/bch.c
> index bc89dfe4d1b3..f14eac93ecc4 100644
> --- a/lib/bch.c
> +++ b/lib/bch.c
> @@ -78,10 +78,12 @@
> #define GF_M(_p) (CONFIG_BCH_CONST_M)
> #define GF_T(_p) (CONFIG_BCH_CONST_T)
> #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
> +#define BCH_MAX_M (CONFIG_BCH_CONST_M)
> #else
> #define GF_M(_p) ((_p)->m)
> #define GF_T(_p) ((_p)->t)
> #define GF_N(_p) ((_p)->n)
> +#define BCH_MAX_M 15
> #endif
>
> #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
> @@ -187,7 +189,7 @@ void encode_bch(struct bch_control *bch, const uint8_t *data,
> const unsigned int l = BCH_ECC_WORDS(bch)-1;
> unsigned int i, mlen;
> unsigned long m;
> - uint32_t w, r[l+1];
> + uint32_t w;
> const uint32_t * const tab0 = bch->mod8_tab;
> const uint32_t * const tab1 = tab0 + 256*(l+1);
> const uint32_t * const tab2 = tab1 + 256*(l+1);
> @@ -198,7 +200,7 @@ void encode_bch(struct bch_control *bch, const uint8_t *data,
> /* load ecc parity bytes into internal 32-bit buffer */
> load_ecc8(bch, bch->ecc_buf, ecc);
> } else {
> - memset(bch->ecc_buf, 0, sizeof(r));
> + memset(bch->ecc_work, 0, bch->ecc_bytes);
> }
>
> /* process first unaligned data bytes */
> @@ -215,7 +217,7 @@ void encode_bch(struct bch_control *bch, const uint8_t *data,
> mlen = len/4;
> data += 4*mlen;
> len -= 4*mlen;
> - memcpy(r, bch->ecc_buf, sizeof(r));
> + memcpy(bch->ecc_work, bch->ecc_buf, bch->ecc_bytes);
>
> /*
> * split each 32-bit word into 4 polynomials of weight 8 as follows:
> @@ -229,6 +231,8 @@ void encode_bch(struct bch_control *bch, const uint8_t *data,
> * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
> */
> while (mlen--) {
> + uint32_t *r = bch->ecc_work;
> +
> /* input data is read in big-endian format */
> w = r[0]^cpu_to_be32(*pdata++);
> p0 = tab0 + (l+1)*((w >> 0) & 0xff);
> @@ -241,7 +245,7 @@ void encode_bch(struct bch_control *bch, const uint8_t *data,
>
> r[l] = p0[l]^p1[l]^p2[l]^p3[l];
> }
> - memcpy(bch->ecc_buf, r, sizeof(r));
> + memcpy(bch->ecc_buf, bch->ecc_work, bch->ecc_bytes);
>
> /* process last unaligned bytes */
> if (len)
> @@ -434,7 +438,7 @@ static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
> {
> const int m = GF_M(bch);
> unsigned int tmp, mask;
> - int rem, c, r, p, k, param[m];
> + int rem, c, r, p, k, param[BCH_MAX_M];
>
> k = 0;
> mask = 1 << m;
> @@ -1009,10 +1013,10 @@ int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
> }
> /* load received ecc or assume it was XORed in calc_ecc */
> if (recv_ecc) {
> - load_ecc8(bch, bch->ecc_buf2, recv_ecc);
> + load_ecc8(bch, bch->ecc_work, recv_ecc);
> /* XOR received and calculated ecc */
> for (i = 0, sum = 0; i < (int)ecc_words; i++) {
> - bch->ecc_buf[i] ^= bch->ecc_buf2[i];
> + bch->ecc_buf[i] ^= bch->ecc_work[i];
> sum |= bch->ecc_buf[i];
> }
> if (!sum)
> @@ -1114,7 +1118,7 @@ static int build_deg2_base(struct bch_control *bch)
> {
> const int m = GF_M(bch);
> int i, j, r;
> - unsigned int sum, x, y, remaining, ak = 0, xi[m];
> + unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
>
> /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
> for (i = 0; i < m; i++) {
> @@ -1254,7 +1258,6 @@ struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
> struct bch_control *bch = NULL;
>
> const int min_m = 5;
> - const int max_m = 15;
>
> /* default primitive polynomials */
> static const unsigned int prim_poly_tab[] = {
> @@ -1270,7 +1273,7 @@ struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
> goto fail;
> }
> #endif
> - if ((m < min_m) || (m > max_m))
> + if ((m < min_m) || (m > BCH_MAX_M))
> /*
> * values of m greater than 15 are not currently supported;
> * supporting m > 15 would require changing table base type
> @@ -1300,7 +1303,7 @@ struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
> bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
> bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
> bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
> - bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
> + bch->ecc_work = bch_alloc(words*sizeof(*bch->ecc_work), &err);
> bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
> bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
> bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
> @@ -1349,7 +1352,7 @@ void free_bch(struct bch_control *bch)
> kfree(bch->a_log_tab);
> kfree(bch->mod8_tab);
> kfree(bch->ecc_buf);
> - kfree(bch->ecc_buf2);
> + kfree(bch->ecc_work);
> kfree(bch->xi_tab);
> kfree(bch->syn);
> kfree(bch->cache);
> --
> 2.17.0
>
>
> --
> Kees Cook
> Pixel Security

\
 
 \ /
  Last update: 2018-05-30 15:47    [W:1.935 / U:0.104 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site