lkml.org 
[lkml]   [2018]   [Feb]   [4]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
SubjectRe: [GIT PULL tools] Linux kernel memory model
On Sun, 4 Feb 2018, Paul E. McKenney wrote:

> --- a/tools/memory-model/litmus-tests/CoRW+poonceonce+Once.litmus
> +++ b/tools/memory-model/litmus-tests/CoRW+poonceonce+Once.litmus
> @@ -1,5 +1,11 @@
> C CoRW+poonceonce+Once
>
> +(*
> + * Test of read-write coherence, that is, whether or not a read from a
> + * given variable followed by a write to that same variable are ordered.

The syntax of this sentence is a little tortured. Suggestion:

... whether or not a read from a given variable and a later
write to that same variable are ordered.

> + * This should be ordered, that is, this test should be forbidden.

s/This/They/

> --- a/tools/memory-model/litmus-tests/CoWR+poonceonce+Once.litmus
> +++ b/tools/memory-model/litmus-tests/CoWR+poonceonce+Once.litmus
> @@ -1,5 +1,11 @@
> C CoWR+poonceonce+Once
>
> +(*
> + * Test of write-read coherence, that is, whether or not a write to a
> + * given variable followed by a read from that same variable are ordered.

Same syntax issue as above.

> --- a/tools/memory-model/litmus-tests/ISA2+poonceonces.litmus
> +++ b/tools/memory-model/litmus-tests/ISA2+poonceonces.litmus
> @@ -1,5 +1,13 @@
> C ISA2+poonceonces
>
> +(*
> + * Given a release-acquire chain ordering the first process's store
> + * against the last process's load, is ordering preserved if all of the
> + * smp_store_release() invocations be replaced by WRITE_ONCE() and all

s/be/are/

> + * of the smp_load_acquire() invocations be replaced by READ_ONCE()?

s/be/are/

> --- a/tools/memory-model/litmus-tests/LB+ctrlonceonce+mbonceonce.litmus
> +++ b/tools/memory-model/litmus-tests/LB+ctrlonceonce+mbonceonce.litmus
> @@ -1,5 +1,14 @@
> C LB+ctrlonceonce+mbonceonce
>
> +(*
> + * This litmus test demonstrates that lightweight ordering suffices for
> + * the load-buffering pattern, in other words, preventing all processes
> + * reading from the preceding process's write. In this example, the
> + * combination of a control dependency and a full memory barrier are to do

s/are to/are enough to/

> --- a/tools/memory-model/litmus-tests/MP+polocks.litmus
> +++ b/tools/memory-model/litmus-tests/MP+polocks.litmus
> @@ -1,5 +1,14 @@
> C MP+polocks
>
> +(*
> + * This litmus test demonstrates how lock acquisitions and releases can
> + * stand in for smp_load_acquire() and smp_store_release(), respectively.
> + * In other words, when holding a given lock (or indeed after relaasing a

s/relaasing/releasing/

> + * given lock), a CPU is not only guaranteed to see the accesses that other
> + * CPOs made while previously holding that lock, it are also guaranteed

s/CPO/CPU/
s/are/is/

> + * to see all prior accesses by those other CPUs.

Doesn't say whether the test should be allowed. This is true of several
other litmus tests too.

> --- a/tools/memory-model/litmus-tests/MP+porevlocks.litmus
> +++ b/tools/memory-model/litmus-tests/MP+porevlocks.litmus
> @@ -1,5 +1,14 @@
> C MP+porevlocks
>
> +(*
> + * This litmus test demonstrates how lock acquisitions and releases can
> + * stand in for smp_load_acquire() and smp_store_release(), respectively.
> + * In other words, when holding a given lock (or indeed after relaasing a

s/relaasing/releasing

> + * given lock), a CPU is not only guaranteed to see the accesses that other
> + * CPOs made while previously holding that lock, it are also guaranteed

s/CPO/CPU/
s/are/is/

> --- a/tools/memory-model/litmus-tests/R+poonceonces.litmus
> +++ b/tools/memory-model/litmus-tests/R+poonceonces.litmus
> @@ -1,5 +1,11 @@
> C R+poonceonces
>
> +(*
> + * This is the unordered (via smp_mb()) version of one of the classic

Does "unordered (via smp_mb())" mean that the test uses smp_mb() to
"unorder" the accesses, or does it mean that the test doesn't use smp_mb()
to order the accesses?

> --- a/tools/memory-model/litmus-tests/S+poonceonces.litmus
> +++ b/tools/memory-model/litmus-tests/S+poonceonces.litmus
> @@ -1,5 +1,13 @@
> C S+poonceonces
>
> +(*
> + * Starting with a two-process release-acquire chain ordering P0()'s
> + * first store against P1()'s final load, if the smp_store_release()
> + * is replaced by WRITE_ONCE() and the smp_load_acquire() replaced by
> + * READ_ONCE(), is ordering preserved. The answer is "of course not!",

s/./?/

> --- a/tools/memory-model/litmus-tests/SB+mbonceonces.litmus
> +++ b/tools/memory-model/litmus-tests/SB+mbonceonces.litmus
> @@ -1,5 +1,12 @@
> C SB+mbonceonces
>
> +(*
> + * This litmus test demonstrates that full memory barriers suffice to
> + * order the store-buffering pattern, where each process writes to the
> + * variable that the preceding process read. (Locking and RCU can also

s/read/reads/

> --- a/tools/memory-model/litmus-tests/SB+poonceonces.litmus
> +++ b/tools/memory-model/litmus-tests/SB+poonceonces.litmus
> @@ -1,5 +1,11 @@
> C SB+poonceonces
>
> +(*
> + * This litmus test demonstrates that at least some ordering is required
> + * to order the store-buffering pattern, where each process writes to the
> + * variable that the preceding process read. This test should be allowed.

s/read/reads/

> --- a/tools/memory-model/litmus-tests/Z6.0+pooncelock+pooncelock+pombonce.litmus
> +++ b/tools/memory-model/litmus-tests/Z6.0+pooncelock+pooncelock+pombonce.litmus
> @@ -1,5 +1,11 @@
> C Z6.0+pooncelock+pooncelock+pombonce
>
> +(*
> + * This example demonstrates that a pair of accesses made by different
> + * processes each while holding a given lock will not necessarily be
> + * seen as ordered by a third process not holding that lock.
> + *)

Note that the outcome of this test will be changed by one of the
patches in our "pending" list.

Alan

\
 
 \ /
  Last update: 2018-02-04 17:38    [W:0.260 / U:0.040 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site