lkml.org 
[lkml]   [2016]   [Jul]   [4]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
From
Subject[patch 4 14/22] timer: Switch to a non cascading wheel
The current timer wheel has some drawbacks:

1) Cascading

Cascading can be an unbound operation and is completely pointless in most
cases because the vast majority of the timer wheel timers are canceled or
rearmed before expiration.

2) No fast lookup of the next expiring timer

In NOHZ scenarios the first timer soft interrupt after a long NOHZ period
must fast forward the base time to current jiffies. As we have no way to
find the next expiring timer fast, the code loops and increments the base
time by one and checks for expired timers in each step.

After a thorough analysis of real world data gathered on laptops,
workstations, webservers and other machines (thanks Chris!) I came to the
conclusion that the current 'classic' timer wheel implementation can be
modified to address the above issues.

The vast majority of timer wheel timers is canceled or rearmed before
expiry. Most of them are timeouts for networking and other I/O tasks. The
nature of timeouts is to catch the exception from normal operation (TCP ack
timed out, disk does not respond, etc.). For these kind of timeouts the
accuracy is not really a concern. In case the timeout fires, performance is
down the drain already.

The few timers which actually expire can be split into two categories:

1) Short expiry times which expect halfways accurate expiry

2) Long term expiry times are inaccurate today already due to the batching
which is done for NOHZ.

So for long term expiry timers we can avoid the cascading property and just
leave them in the less granular outer wheels until expiry or
cancelation. Timers which are armed with a timeout larger than the wheel
capacity are not longer cascaded. We expire them with the longest possible
timeout (6+ days). We have not observed such timeouts in our data collection,
but at least we handle them with the least surprising effect.

To avoid extending the wheel levels for HZ=1000 so we can accomodate the
longest observed timeouts (5 days in the network conntrack code) we reduce the
first level granularity on HZ=1000 to 4ms, which effectively is the same as
the HZ=250 behaviour. From our data analysis there is nothing which relies on
that 1ms granularity and as a side effect we get better batching and timer
locality for the networking code as well.

Contrary to the classic wheel the granularity of the next wheel is not the
capacity of the first wheel. The granularities of the wheels are in the
currently chosen setting 8 times the granularity of the previous wheel. So for
HZ=250 we end up with the following granularity levels:

Level Offset Granularity Range
0 0 4 ms 0 ms - 252 ms
1 64 32 ms 256 ms - 2044 ms (256ms - ~2s)
2 128 256 ms 2048 ms - 16380 ms (~2s - ~16s)
3 192 2048 ms (~2s) 16384 ms - 131068 ms (~16s - ~2m)
4 256 16384 ms (~16s) 131072 ms - 1048572 ms (~2m - ~17m)
5 320 131072 ms (~2m) 1048576 ms - 8388604 ms (~17m - ~2h)
6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)

That's a worst case inaccuracy of 12.5% for the timers which are queued at the
beginning of a level.

So the new wheel concept addresses the old issues:

1) Cascading is avoided (except for extreme long time timers)

2) By keeping the timers in the bucket until expiry/cancelation we can track
the buckets which have timers enqueued in a bucket bitmap and therefor can
lookup the next expiring timer fast and time bound.

A further benefit of the concept is, that the slack calculation which is done
on every timer start is not longer necessary because the granularity levels
provide natural batching already.

Our extensive testing with various loads did not show any performance
degradation vs. the current wheel implementation.

This patch does not address the 'fast lookup' issue as we wanted to make sure
that there is no regression introduced by the wheel redesign. The
optimizations are in follow up patches.

[ Contains fixes from Anna-Maria Gleixner and Richard Cochran ]

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Mason <clm@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: rt@linutronix.de
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Arjan van de Ven <arjan@infradead.org>

---
v4: Simplify wheel constants handling as pointed out by George Spelvin. Switch
to a non cascading wheel and let HZ=1000 have reduced granularity to
accomodate the 5days timeouts of the networking code.

v3: fix return value of __next_timer_interrupt()
v2: change HASH_SIZE to TOT_HASH_SIZE (as Richard mentioned)

include/linux/timer.h | 2
kernel/time/timer.c | 825 ++++++++++++++++++++++++++++----------------------
2 files changed, 467 insertions(+), 360 deletions(-)

--- a/include/linux/timer.h
+++ b/include/linux/timer.h
@@ -64,6 +64,8 @@ struct timer_list {
#define TIMER_DEFERRABLE 0x00080000
#define TIMER_PINNED 0x00100000
#define TIMER_IRQSAFE 0x00200000
+#define TIMER_ARRAYSHIFT 22
+#define TIMER_ARRAYMASK 0xFFC00000

#define __TIMER_INITIALIZER(_function, _expires, _data, _flags) { \
.entry = { .next = TIMER_ENTRY_STATIC }, \
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -59,43 +59,151 @@
EXPORT_SYMBOL(jiffies_64);

/*
- * per-CPU timer vector definitions:
+ * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
+ * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
+ * level has a different granularity.
+ *
+ * The level granularity is: LVL_CLK_DIV ^ lvl
+ * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
+ *
+ * The array level of a newly armed timer depends on the relative expiry
+ * time. The farther the expiry time is away the higher the array level and
+ * therefor the granularity becomes.
+ *
+ * Contrary to the original timer wheel implementation, which aims for 'exact'
+ * expiry of the timers, this implementation removes the need for recascading
+ * the timers into the lower array levels. The previous 'classic' timer wheel
+ * implementation of the kernel already violated the 'exact' expiry by adding
+ * slack to the expiry time to provide batched expiration. The granularity
+ * levels provide implicit batching.
+ *
+ * This is an optimization of the original timer wheel implementation for the
+ * majority of the timer wheel use cases: timeouts. The vast majority of
+ * timeout timers (networking, disk I/O ...) are canceled before expiry. If
+ * the timeout expires it indicates that normal operation is disturbed, so it
+ * does not matter much whether the timeout comes with a slight delay.
+ *
+ * The only exception to this are networking timers with a small expiry
+ * time. They rely on the granularity. Those fit into the first wheel level,
+ * which has HZ granularity.
+ *
+ * We don't have cascading anymore. timers with a expiry time above the
+ * capacity of the last wheel level are force expired at the maximum timeout
+ * value of the last wheel level. From data sampling we know that the maximum
+ * value observed is 5 days (network connection tracking), so this should not
+ * be an issue.
+ *
+ * The currently chosen array constants values are a good compromise between
+ * array size and granularity.
+ *
+ * This results in the following granularity and range levels:
+ *
+ * HZ 1000 steps
+ * Level Offset Granularity Range
+ * 0 0 1 ms 0 ms - 63 ms
+ * 1 64 8 ms 64 ms - 511 ms
+ * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
+ * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
+ * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
+ * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
+ * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
+ * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
+ * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
+ *
+ * HZ 300
+ * Level Offset Granularity Range
+ * 0 0 3 ms 0 ms - 210 ms
+ * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
+ * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
+ * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
+ * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
+ * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
+ * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
+ * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
+ * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
+ *
+ * HZ 250
+ * Level Offset Granularity Range
+ * 0 0 4 ms 0 ms - 255 ms
+ * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
+ * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
+ * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
+ * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
+ * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
+ * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
+ * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
+ * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
+ *
+ * HZ 100
+ * Level Offset Granularity Range
+ * 0 0 10 ms 0 ms - 630 ms
+ * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
+ * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
+ * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
+ * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
+ * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
+ * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
+ * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
+ */
+
+/* Clock divisor for the next level */
+#define LVL_CLK_SHIFT 3
+#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
+#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
+#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
+#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
+
+/*
+ * The time start value for each level to select the bucket at enqueue
+ * time.
*/
-#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
-#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
-#define TVN_SIZE (1 << TVN_BITS)
-#define TVR_SIZE (1 << TVR_BITS)
-#define TVN_MASK (TVN_SIZE - 1)
-#define TVR_MASK (TVR_SIZE - 1)
-#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
+#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))

-struct tvec {
- struct hlist_head vec[TVN_SIZE];
-};
+/* Size of each clock level */
+#define LVL_BITS 6
+#define LVL_SIZE (1UL << LVL_BITS)
+#define LVL_MASK (LVL_SIZE - 1)
+#define LVL_OFFS(n) ((n) * LVL_SIZE)
+
+/* Level depth */
+#if HZ > 100
+# define LVL_DEPTH 9
+# else
+# define LVL_DEPTH 8
+#endif

-struct tvec_root {
- struct hlist_head vec[TVR_SIZE];
-};
+/* The cutoff (max. capacity of the wheel) */
+#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
+#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
+
+/*
+ * The resulting wheel size. If NOHZ is configured we allocate two
+ * wheels so we have a separate storage for the deferrable timers.
+ */
+#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
+
+#ifdef CONFIG_NO_HZ_COMMON
+# define NR_BASES 2
+# define BASE_STD 0
+# define BASE_DEF 1
+#else
+# define NR_BASES 1
+# define BASE_STD 0
+# define BASE_DEF 0
+#endif

struct timer_base {
- spinlock_t lock;
- struct timer_list *running_timer;
- unsigned long clk;
- unsigned long next_timer;
- unsigned long active_timers;
- unsigned long all_timers;
- int cpu;
- bool migration_enabled;
- bool nohz_active;
- struct tvec_root tv1;
- struct tvec tv2;
- struct tvec tv3;
- struct tvec tv4;
- struct tvec tv5;
+ spinlock_t lock;
+ struct timer_list *running_timer;
+ unsigned long clk;
+ unsigned int cpu;
+ bool migration_enabled;
+ bool nohz_active;
+ DECLARE_BITMAP(pending_map, WHEEL_SIZE);
+ struct hlist_head vectors[WHEEL_SIZE];
} ____cacheline_aligned;

-
-static DEFINE_PER_CPU(struct timer_base, timer_bases);
+static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);

#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
unsigned int sysctl_timer_migration = 1;
@@ -106,15 +214,17 @@ void timers_update_migration(bool update
unsigned int cpu;

/* Avoid the loop, if nothing to update */
- if (this_cpu_read(timer_bases.migration_enabled) == on)
+ if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
return;

for_each_possible_cpu(cpu) {
- per_cpu(timer_bases.migration_enabled, cpu) = on;
+ per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
+ per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
if (!update_nohz)
continue;
- per_cpu(timer_bases.nohz_active, cpu) = true;
+ per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
+ per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
per_cpu(hrtimer_bases.nohz_active, cpu) = true;
}
}
@@ -133,20 +243,6 @@ int timer_migration_handler(struct ctl_t
mutex_unlock(&mutex);
return ret;
}
-
-static inline struct timer_base *get_target_base(struct timer_base *base,
- int pinned)
-{
- if (pinned || !base->migration_enabled)
- return this_cpu_ptr(&timer_bases);
- return per_cpu_ptr(&timer_bases, get_nohz_timer_target());
-}
-#else
-static inline struct timer_base *get_target_base(struct timer_base *base,
- int pinned)
-{
- return this_cpu_ptr(&timer_bases);
-}
#endif

static unsigned long round_jiffies_common(unsigned long j, int cpu,
@@ -370,78 +466,91 @@ void set_timer_slack(struct timer_list *
}
EXPORT_SYMBOL_GPL(set_timer_slack);

+static inline unsigned int timer_get_idx(struct timer_list *timer)
+{
+ return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
+}
+
+static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
+{
+ timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
+ idx << TIMER_ARRAYSHIFT;
+}
+
+/*
+ * Helper function to calculate the array index for a given expiry
+ * time.
+ */
+static inline unsigned calc_index(unsigned expires, unsigned lvl)
+{
+ expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
+ return LVL_OFFS(lvl) + (expires & LVL_MASK);
+}
+
static void
__internal_add_timer(struct timer_base *base, struct timer_list *timer)
{
unsigned long expires = timer->expires;
- unsigned long idx = expires - base->clk;
+ unsigned long delta = expires - base->clk;
struct hlist_head *vec;
+ unsigned int idx;

- if (idx < TVR_SIZE) {
- int i = expires & TVR_MASK;
- vec = base->tv1.vec + i;
- } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
- int i = (expires >> TVR_BITS) & TVN_MASK;
- vec = base->tv2.vec + i;
- } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
- int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
- vec = base->tv3.vec + i;
- } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
- int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
- vec = base->tv4.vec + i;
- } else if ((signed long) idx < 0) {
- /*
- * Can happen if you add a timer with expires == jiffies,
- * or you set a timer to go off in the past
- */
- vec = base->tv1.vec + (base->clk & TVR_MASK);
+ if (delta < LVL_START(1)) {
+ idx = calc_index(expires, 0);
+ } else if (delta < LVL_START(2)) {
+ idx = calc_index(expires, 1);
+ } else if (delta < LVL_START(3)) {
+ idx = calc_index(expires, 2);
+ } else if (delta < LVL_START(4)) {
+ idx = calc_index(expires, 3);
+ } else if (delta < LVL_START(5)) {
+ idx = calc_index(expires, 4);
+ } else if (delta < LVL_START(6)) {
+ idx = calc_index(expires, 5);
+ } else if (delta < LVL_START(7)) {
+ idx = calc_index(expires, 6);
+ } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
+ idx = calc_index(expires, 7);
+ } else if ((long) delta < 0) {
+ idx = base->clk & LVL_MASK;
} else {
- int i;
- /* If the timeout is larger than MAX_TVAL (on 64-bit
- * architectures or with CONFIG_BASE_SMALL=1) then we
- * use the maximum timeout.
+ /*
+ * Force expire obscene large timeouts to expire at the
+ * capacity limit of the wheel.
*/
- if (idx > MAX_TVAL) {
- idx = MAX_TVAL;
- expires = idx + base->clk;
- }
- i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
- vec = base->tv5.vec + i;
- }
+ if (expires >= WHEEL_TIMEOUT_CUTOFF)
+ expires = WHEEL_TIMEOUT_MAX;

+ idx = calc_index(expires, LVL_DEPTH - 1);
+ }
+ /*
+ * Enqueue the timer into the array bucket, mark it pending in
+ * the bitmap and store the index in the timer flags.
+ */
+ vec = base->vectors + idx;
hlist_add_head(&timer->entry, vec);
+ __set_bit(idx, base->pending_map);
+ timer_set_idx(timer, idx);
}

static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
{
- /* Advance base->jiffies, if the base is empty */
- if (!base->all_timers++)
- base->clk = jiffies;
-
__internal_add_timer(base, timer);
- /*
- * Update base->active_timers and base->next_timer
- */
- if (!(timer->flags & TIMER_DEFERRABLE)) {
- if (!base->active_timers++ ||
- time_before(timer->expires, base->next_timer))
- base->next_timer = timer->expires;
- }

/*
* Check whether the other CPU is in dynticks mode and needs
- * to be triggered to reevaluate the timer wheel.
- * We are protected against the other CPU fiddling
- * with the timer by holding the timer base lock. This also
- * makes sure that a CPU on the way to stop its tick can not
- * evaluate the timer wheel.
+ * to be triggered to reevaluate the timer wheel. We are
+ * protected against the other CPU fiddling with the timer by
+ * holding the timer base lock. This also makes sure that a
+ * CPU on the way to stop its tick can not evaluate the timer
+ * wheel.
*
* Spare the IPI for deferrable timers on idle targets though.
* The next busy ticks will take care of it. Except full dynticks
* require special care against races with idle_cpu(), lets deal
* with that later.
*/
- if (base->nohz_active) {
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active) {
if (!(timer->flags & TIMER_DEFERRABLE) ||
tick_nohz_full_cpu(base->cpu))
wake_up_nohz_cpu(base->cpu);
@@ -706,54 +815,87 @@ static inline void detach_timer(struct t
entry->next = LIST_POISON2;
}

-static inline void
-detach_expired_timer(struct timer_list *timer, struct timer_base *base)
-{
- detach_timer(timer, true);
- if (!(timer->flags & TIMER_DEFERRABLE))
- base->active_timers--;
- base->all_timers--;
-}
-
static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
bool clear_pending)
{
+ unsigned idx = timer_get_idx(timer);
+
if (!timer_pending(timer))
return 0;

+ if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
+ __clear_bit(idx, base->pending_map);
+
detach_timer(timer, clear_pending);
- if (!(timer->flags & TIMER_DEFERRABLE)) {
- base->active_timers--;
- if (timer->expires == base->next_timer)
- base->next_timer = base->clk;
- }
- /* If this was the last timer, advance base->jiffies */
- if (!--base->all_timers)
- base->clk = jiffies;
return 1;
}

+static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
+{
+ struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
+
+ /*
+ * If the timer is deferrable and nohz is active then we need to use
+ * the deferrable base.
+ */
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
+ (tflags & TIMER_DEFERRABLE))
+ base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
+ return base;
+}
+
+static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
+{
+ struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+
+ /*
+ * If the timer is deferrable and nohz is active then we need to use
+ * the deferrable base.
+ */
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
+ (tflags & TIMER_DEFERRABLE))
+ base = this_cpu_ptr(&timer_bases[BASE_DEF]);
+ return base;
+}
+
+static inline struct timer_base *get_timer_base(u32 tflags)
+{
+ return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
+}
+
+static inline struct timer_base *get_target_base(struct timer_base *base,
+ unsigned tflags)
+{
+#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
+ if ((tflags & TIMER_PINNED) || !base->migration_enabled)
+ return get_timer_this_cpu_base(tflags);
+ return get_timer_cpu_base(tflags, get_nohz_timer_target());
+#else
+ return get_timer_this_cpu_base(tflags);
+#endif
+}
+
/*
- * We are using hashed locking: holding per_cpu(timer_bases).lock
- * means that all timers which are tied to this base via timer->base are
- * locked, and the base itself is locked too.
+ * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
+ * that all timers which are tied to this base are locked, and the base itself
+ * is locked too.
*
* So __run_timers/migrate_timers can safely modify all timers which could
- * be found on ->tvX lists.
+ * be found in the base->vectors array.
*
- * When the timer's base is locked and removed from the list, the
- * TIMER_MIGRATING flag is set, FIXME
+ * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
+ * to wait until the migration is done.
*/
static struct timer_base *lock_timer_base(struct timer_list *timer,
- unsigned long *flags)
+ unsigned long *flags)
__acquires(timer->base->lock)
{
for (;;) {
- u32 tf = timer->flags;
struct timer_base *base;
+ u32 tf = timer->flags;

if (!(tf & TIMER_MIGRATING)) {
- base = per_cpu_ptr(&timer_bases, tf & TIMER_CPUMASK);
+ base = get_timer_base(tf);
spin_lock_irqsave(&base->lock, *flags);
if (timer->flags == tf)
return base;
@@ -770,6 +912,27 @@ static inline int
unsigned long flags;
int ret = 0;

+ /*
+ * TODO: Calculate the array bucket of the timer right here w/o
+ * holding the base lock. This allows to check not only
+ * timer->expires == expires below, but also whether the timer
+ * ends up in the same bucket. If we really need to requeue
+ * the timer then we check whether base->clk have
+ * advanced between here and locking the timer base. If
+ * jiffies advanced we have to recalc the array bucket with the
+ * lock held.
+ */
+
+ /*
+ * This is a common optimization triggered by the
+ * networking code - if the timer is re-modified
+ * to be the same thing then just return:
+ */
+ if (timer_pending(timer)) {
+ if (timer->expires == expires)
+ return 1;
+ }
+
timer_stats_timer_set_start_info(timer);
BUG_ON(!timer->function);

@@ -781,15 +944,15 @@ static inline int

debug_activate(timer, expires);

- new_base = get_target_base(base, timer->flags & TIMER_PINNED);
+ new_base = get_target_base(base, timer->flags);

if (base != new_base) {
/*
- * We are trying to schedule the timer on the local CPU.
+ * We are trying to schedule the timer on the new base.
* However we can't change timer's base while it is running,
* otherwise del_timer_sync() can't detect that the timer's
- * handler yet has not finished. This also guarantees that
- * the timer is serialized wrt itself.
+ * handler yet has not finished. This also guarantees that the
+ * timer is serialized wrt itself.
*/
if (likely(base->running_timer != timer)) {
/* See the comment in lock_timer_base() */
@@ -828,45 +991,6 @@ int mod_timer_pending(struct timer_list
}
EXPORT_SYMBOL(mod_timer_pending);

-/*
- * Decide where to put the timer while taking the slack into account
- *
- * Algorithm:
- * 1) calculate the maximum (absolute) time
- * 2) calculate the highest bit where the expires and new max are different
- * 3) use this bit to make a mask
- * 4) use the bitmask to round down the maximum time, so that all last
- * bits are zeros
- */
-static inline
-unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
-{
- unsigned long expires_limit, mask;
- int bit;
-
- if (timer->slack >= 0) {
- expires_limit = expires + timer->slack;
- } else {
- long delta = expires - jiffies;
-
- if (delta < 256)
- return expires;
-
- expires_limit = expires + delta / 256;
- }
- mask = expires ^ expires_limit;
- if (mask == 0)
- return expires;
-
- bit = __fls(mask);
-
- mask = (1UL << bit) - 1;
-
- expires_limit = expires_limit & ~(mask);
-
- return expires_limit;
-}
-
/**
* mod_timer - modify a timer's timeout
* @timer: the timer to be modified
@@ -889,16 +1013,6 @@ unsigned long apply_slack(struct timer_l
*/
int mod_timer(struct timer_list *timer, unsigned long expires)
{
- expires = apply_slack(timer, expires);
-
- /*
- * This is a common optimization triggered by the
- * networking code - if the timer is re-modified
- * to be the same thing then just return:
- */
- if (timer_pending(timer) && timer->expires == expires)
- return 1;
-
return __mod_timer(timer, expires, false);
}
EXPORT_SYMBOL(mod_timer);
@@ -933,13 +1047,14 @@ EXPORT_SYMBOL(add_timer);
*/
void add_timer_on(struct timer_list *timer, int cpu)
{
- struct timer_base *new_base = per_cpu_ptr(&timer_bases, cpu);
- struct timer_base *base;
+ struct timer_base *new_base, *base;
unsigned long flags;

timer_stats_timer_set_start_info(timer);
BUG_ON(timer_pending(timer) || !timer->function);

+ new_base = get_timer_cpu_base(timer->flags, cpu);
+
/*
* If @timer was on a different CPU, it should be migrated with the
* old base locked to prevent other operations proceeding with the
@@ -1085,27 +1200,6 @@ int del_timer_sync(struct timer_list *ti
EXPORT_SYMBOL(del_timer_sync);
#endif

-static int cascade(struct timer_base *base, struct tvec *tv, int index)
-{
- /* cascade all the timers from tv up one level */
- struct timer_list *timer;
- struct hlist_node *tmp;
- struct hlist_head tv_list;
-
- hlist_move_list(tv->vec + index, &tv_list);
-
- /*
- * We are removing _all_ timers from the list, so we
- * don't have to detach them individually.
- */
- hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
- /* No accounting, while moving them */
- __internal_add_timer(base, timer);
- }
-
- return index;
-}
-
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
unsigned long data)
{
@@ -1149,68 +1243,80 @@ static void call_timer_fn(struct timer_l
}
}

-#define INDEX(N) ((base->clk >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
+static void expire_timers(struct timer_base *base, struct hlist_head *head)
+{
+ while (!hlist_empty(head)) {
+ struct timer_list *timer;
+ void (*fn)(unsigned long);
+ unsigned long data;
+
+ timer = hlist_entry(head->first, struct timer_list, entry);
+ timer_stats_account_timer(timer);
+
+ base->running_timer = timer;
+ detach_timer(timer, true);
+
+ fn = timer->function;
+ data = timer->data;
+
+ if (timer->flags & TIMER_IRQSAFE) {
+ spin_unlock(&base->lock);
+ call_timer_fn(timer, fn, data);
+ spin_lock(&base->lock);
+ } else {
+ spin_unlock_irq(&base->lock);
+ call_timer_fn(timer, fn, data);
+ spin_lock_irq(&base->lock);
+ }
+ }
+}
+
+static int collect_expired_timers(struct timer_base *base,
+ struct hlist_head *heads)
+{
+ unsigned long clk = base->clk;
+ struct hlist_head *vec;
+ int i, levels = 0;
+ unsigned int idx;
+
+ for (i = 0; i < LVL_DEPTH; i++) {
+ idx = (clk & LVL_MASK) + i * LVL_SIZE;
+
+ if (__test_and_clear_bit(idx, base->pending_map)) {
+ vec = base->vectors + idx;
+ hlist_move_list(vec, heads++);
+ levels++;
+ }
+ /* Is it time to look at the next level? */
+ if (clk & LVL_CLK_MASK)
+ break;
+ /* Shift clock for the next level granularity */
+ clk >>= LVL_CLK_SHIFT;
+ }
+ return levels;
+}

/**
* __run_timers - run all expired timers (if any) on this CPU.
* @base: the timer vector to be processed.
- *
- * This function cascades all vectors and executes all expired timer
- * vectors.
*/
static inline void __run_timers(struct timer_base *base)
{
- struct timer_list *timer;
+ struct hlist_head heads[LVL_DEPTH];
+ int levels;
+
+ if (!time_after_eq(jiffies, base->clk))
+ return;

spin_lock_irq(&base->lock);

while (time_after_eq(jiffies, base->clk)) {
- struct hlist_head work_list;
- struct hlist_head *head = &work_list;
- int index;

- if (!base->all_timers) {
- base->clk = jiffies;
- break;
- }
-
- index = base->clk & TVR_MASK;
+ levels = collect_expired_timers(base, heads);
+ base->clk++;

- /*
- * Cascade timers:
- */
- if (!index &&
- (!cascade(base, &base->tv2, INDEX(0))) &&
- (!cascade(base, &base->tv3, INDEX(1))) &&
- !cascade(base, &base->tv4, INDEX(2)))
- cascade(base, &base->tv5, INDEX(3));
- ++base->clk;
- hlist_move_list(base->tv1.vec + index, head);
- while (!hlist_empty(head)) {
- void (*fn)(unsigned long);
- unsigned long data;
- bool irqsafe;
-
- timer = hlist_entry(head->first, struct timer_list, entry);
- fn = timer->function;
- data = timer->data;
- irqsafe = timer->flags & TIMER_IRQSAFE;
-
- timer_stats_account_timer(timer);
-
- base->running_timer = timer;
- detach_expired_timer(timer, base);
-
- if (irqsafe) {
- spin_unlock(&base->lock);
- call_timer_fn(timer, fn, data);
- spin_lock(&base->lock);
- } else {
- spin_unlock_irq(&base->lock);
- call_timer_fn(timer, fn, data);
- spin_lock_irq(&base->lock);
- }
- }
+ while (levels--)
+ expire_timers(base, heads + levels);
}
base->running_timer = NULL;
spin_unlock_irq(&base->lock);
@@ -1218,78 +1324,87 @@ static inline void __run_timers(struct t

#ifdef CONFIG_NO_HZ_COMMON
/*
- * Find out when the next timer event is due to happen. This
- * is used on S/390 to stop all activity when a CPU is idle.
- * This function needs to be called with interrupts disabled.
+ * Find the next pending bucket of a level. Search from @offset + @clk upwards
+ * and if nothing there, search from start of the level (@offset) up to
+ * @offset + clk.
+ */
+static int next_pending_bucket(struct timer_base *base, unsigned offset,
+ unsigned clk)
+{
+ unsigned pos, start = offset + clk;
+ unsigned end = offset + LVL_SIZE;
+
+ pos = find_next_bit(base->pending_map, end, start);
+ if (pos < end)
+ return pos - start;
+
+ pos = find_next_bit(base->pending_map, start, offset);
+ return pos < start ? pos + LVL_SIZE - start : -1;
+}
+
+/*
+ * Search the first expiring timer in the various clock levels.
*/
static unsigned long __next_timer_interrupt(struct timer_base *base)
{
- unsigned long clk = base->clk;
- unsigned long expires = clk + NEXT_TIMER_MAX_DELTA;
- int index, slot, array, found = 0;
- struct timer_list *nte;
- struct tvec *varray[4];
-
- /* Look for timer events in tv1. */
- index = slot = clk & TVR_MASK;
- do {
- hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
- if (nte->flags & TIMER_DEFERRABLE)
- continue;
-
- found = 1;
- expires = nte->expires;
- /* Look at the cascade bucket(s)? */
- if (!index || slot < index)
- goto cascade;
- return expires;
- }
- slot = (slot + 1) & TVR_MASK;
- } while (slot != index);
+ unsigned long clk, next, adj;
+ unsigned lvl, offset = 0;

-cascade:
- /* Calculate the next cascade event */
- if (index)
- clk += TVR_SIZE - index;
- clk >>= TVR_BITS;
-
- /* Check tv2-tv5. */
- varray[0] = &base->tv2;
- varray[1] = &base->tv3;
- varray[2] = &base->tv4;
- varray[3] = &base->tv5;
-
- for (array = 0; array < 4; array++) {
- struct tvec *varp = varray[array];
-
- index = slot = clk & TVN_MASK;
- do {
- hlist_for_each_entry(nte, varp->vec + slot, entry) {
- if (nte->flags & TIMER_DEFERRABLE)
- continue;
-
- found = 1;
- if (time_before(nte->expires, expires))
- expires = nte->expires;
- }
- /*
- * Do we still search for the first timer or are
- * we looking up the cascade buckets ?
- */
- if (found) {
- /* Look at the cascade bucket(s)? */
- if (!index || slot < index)
- break;
- return expires;
- }
- slot = (slot + 1) & TVN_MASK;
- } while (slot != index);
-
- if (index)
- clk += TVN_SIZE - index;
- clk >>= TVN_BITS;
+ spin_lock(&base->lock);
+ next = base->clk + NEXT_TIMER_MAX_DELTA;
+ clk = base->clk;
+ for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
+ int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
+
+ if (pos >= 0) {
+ unsigned long tmp = clk + (unsigned long) pos;
+
+ tmp <<= LVL_SHIFT(lvl);
+ if (time_before(tmp, next))
+ next = tmp;
+ }
+ /*
+ * Clock for the next level. If the current level clock lower
+ * bits are zero, we look at the next level as is. If not we
+ * need to advance it by one because that's going to be the
+ * next expiring bucket in that level. base->clk is the next
+ * expiring jiffie. So in case of:
+ *
+ * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
+ * 0 0 0 0 0 0
+ *
+ * we have to look at all levels @index 0. With
+ *
+ * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
+ * 0 0 0 0 0 2
+ *
+ * LVL0 has the next expiring bucket @index 2. The upper
+ * levels have the next expiring bucket @index 1.
+ *
+ * In case that the propagation wraps the next level the same
+ * rules apply:
+ *
+ * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
+ * 0 0 0 0 F 2
+ *
+ * So after looking at LVL0 we get:
+ *
+ * LVL5 LVL4 LVL3 LVL2 LVL1
+ * 0 0 0 1 0
+ *
+ * So no propagation from LVL1 to LVL2 because that happened
+ * with the add already, but then we need to propagate further
+ * from LVL2 to LVL3.
+ *
+ * So the simple check whether the lower bits of the current
+ * level are 0 or not is sufficient for all cases.
+ */
+ adj = clk & LVL_CLK_MASK ? 1 : 0;
+ clk >>= LVL_CLK_SHIFT;
+ clk += adj;
}
- return expires;
+ spin_unlock(&base->lock);
+ return next;
}

/*
@@ -1335,7 +1450,7 @@ static u64 cmp_next_hrtimer_event(u64 ba
*/
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
{
- struct timer_base *base = this_cpu_ptr(&timer_bases);
+ struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
u64 expires = KTIME_MAX;
unsigned long nextevt;

@@ -1346,17 +1461,11 @@ u64 get_next_timer_interrupt(unsigned lo
if (cpu_is_offline(smp_processor_id()))
return expires;

- spin_lock(&base->lock);
- if (base->active_timers) {
- if (time_before_eq(base->next_timer, base->clk))
- base->next_timer = __next_timer_interrupt(base);
- nextevt = base->next_timer;
- if (time_before_eq(nextevt, basej))
- expires = basem;
- else
- expires = basem + (nextevt - basej) * TICK_NSEC;
- }
- spin_unlock(&base->lock);
+ nextevt = __next_timer_interrupt(base);
+ if (time_before_eq(nextevt, basej))
+ expires = basem;
+ else
+ expires = basem + (nextevt - basej) * TICK_NSEC;

return cmp_next_hrtimer_event(basem, expires);
}
@@ -1387,10 +1496,11 @@ void update_process_times(int user_tick)
*/
static void run_timer_softirq(struct softirq_action *h)
{
- struct timer_base *base = this_cpu_ptr(&timer_bases);
+ struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

- if (time_after_eq(jiffies, base->clk))
- __run_timers(base);
+ __run_timers(base);
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
+ __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
}

/*
@@ -1541,7 +1651,6 @@ static void migrate_timer_list(struct ti

while (!hlist_empty(head)) {
timer = hlist_entry(head->first, struct timer_list, entry);
- /* We ignore the accounting on the dying cpu */
detach_timer(timer, false);
timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
internal_add_timer(new_base, timer);
@@ -1552,35 +1661,29 @@ static void migrate_timers(int cpu)
{
struct timer_base *old_base;
struct timer_base *new_base;
- int i;
+ int b, i;

BUG_ON(cpu_online(cpu));
- old_base = per_cpu_ptr(&timer_bases, cpu);
- new_base = get_cpu_ptr(&timer_bases);
- /*
- * The caller is globally serialized and nobody else
- * takes two locks at once, deadlock is not possible.
- */
- spin_lock_irq(&new_base->lock);
- spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);

- BUG_ON(old_base->running_timer);
+ for (b = 0; b < NR_BASES; b++) {
+ old_base = per_cpu_ptr(&timer_bases[b], cpu);
+ new_base = get_cpu_ptr(&timer_bases[b]);
+ /*
+ * The caller is globally serialized and nobody else
+ * takes two locks at once, deadlock is not possible.
+ */
+ spin_lock_irq(&new_base->lock);
+ spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
+
+ BUG_ON(old_base->running_timer);
+
+ for (i = 0; i < WHEEL_SIZE; i++)
+ migrate_timer_list(new_base, old_base->vectors + i);

- for (i = 0; i < TVR_SIZE; i++)
- migrate_timer_list(new_base, old_base->tv1.vec + i);
- for (i = 0; i < TVN_SIZE; i++) {
- migrate_timer_list(new_base, old_base->tv2.vec + i);
- migrate_timer_list(new_base, old_base->tv3.vec + i);
- migrate_timer_list(new_base, old_base->tv4.vec + i);
- migrate_timer_list(new_base, old_base->tv5.vec + i);
- }
-
- old_base->active_timers = 0;
- old_base->all_timers = 0;
-
- spin_unlock(&old_base->lock);
- spin_unlock_irq(&new_base->lock);
- put_cpu_ptr(&timer_bases);
+ spin_unlock(&old_base->lock);
+ spin_unlock_irq(&new_base->lock);
+ put_cpu_ptr(&timer_bases);
+ }
}

static int timer_cpu_notify(struct notifier_block *self,
@@ -1608,13 +1711,15 @@ static inline void timer_register_cpu_no

static void __init init_timer_cpu(int cpu)
{
- struct timer_base *base = per_cpu_ptr(&timer_bases, cpu);
-
- base->cpu = cpu;
- spin_lock_init(&base->lock);
+ struct timer_base *base;
+ int i;

- base->clk = jiffies;
- base->next_timer = base->clk;
+ for (i = 0; i < NR_BASES; i++) {
+ base = per_cpu_ptr(&timer_bases[i], cpu);
+ base->cpu = cpu;
+ spin_lock_init(&base->lock);
+ base->clk = jiffies;
+ }
}

static void __init init_timer_cpus(void)

\
 
 \ /
  Last update: 2016-07-04 12:21    [W:0.254 / U:2.396 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site