lkml.org 
[lkml]   [2015]   [May]   [8]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
From
Subject[tip:locking/core] locking/qspinlock: Use a simple write to grab the lock
Commit-ID:  2c83e8e9492dc823be1d96d4c5ef75d16d3866a0
Gitweb: http://git.kernel.org/tip/2c83e8e9492dc823be1d96d4c5ef75d16d3866a0
Author: Waiman Long <Waiman.Long@hp.com>
AuthorDate: Fri, 24 Apr 2015 14:56:35 -0400
Committer: Ingo Molnar <mingo@kernel.org>
CommitDate: Fri, 8 May 2015 12:36:55 +0200

locking/qspinlock: Use a simple write to grab the lock

Currently, atomic_cmpxchg() is used to get the lock. However, this
is not really necessary if there is more than one task in the queue
and the queue head don't need to reset the tail code. For that case,
a simple write to set the lock bit is enough as the queue head will
be the only one eligible to get the lock as long as it checks that
both the lock and pending bits are not set. The current pending bit
waiting code will ensure that the bit will not be set as soon as the
tail code in the lock is set.

With that change, the are some slight improvement in the performance
of the queued spinlock in the 5M loop micro-benchmark run on a 4-socket
Westere-EX machine as shown in the tables below.

[Standalone/Embedded - same node]
# of tasks Before patch After patch %Change
---------- ----------- ---------- -------
3 2324/2321 2248/2265 -3%/-2%
4 2890/2896 2819/2831 -2%/-2%
5 3611/3595 3522/3512 -2%/-2%
6 4281/4276 4173/4160 -3%/-3%
7 5018/5001 4875/4861 -3%/-3%
8 5759/5750 5563/5568 -3%/-3%

[Standalone/Embedded - different nodes]
# of tasks Before patch After patch %Change
---------- ----------- ---------- -------
3 12242/12237 12087/12093 -1%/-1%
4 10688/10696 10507/10521 -2%/-2%

It was also found that this change produced a much bigger performance
improvement in the newer IvyBridge-EX chip and was essentially to close
the performance gap between the ticket spinlock and queued spinlock.

The disk workload of the AIM7 benchmark was run on a 4-socket
Westmere-EX machine with both ext4 and xfs RAM disks at 3000 users
on a 3.14 based kernel. The results of the test runs were:

AIM7 XFS Disk Test
kernel JPM Real Time Sys Time Usr Time
----- --- --------- -------- --------
ticketlock 5678233 3.17 96.61 5.81
qspinlock 5750799 3.13 94.83 5.97

AIM7 EXT4 Disk Test
kernel JPM Real Time Sys Time Usr Time
----- --- --------- -------- --------
ticketlock 1114551 16.15 509.72 7.11
qspinlock 2184466 8.24 232.99 6.01

The ext4 filesystem run had a much higher spinlock contention than
the xfs filesystem run.

The "ebizzy -m" test was also run with the following results:

kernel records/s Real Time Sys Time Usr Time
----- --------- --------- -------- --------
ticketlock 2075 10.00 216.35 3.49
qspinlock 3023 10.00 198.20 4.80

Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-7-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
---
kernel/locking/qspinlock.c | 66 +++++++++++++++++++++++++++++++++++-----------
1 file changed, 50 insertions(+), 16 deletions(-)

diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c
index e17efe7..0338721 100644
--- a/kernel/locking/qspinlock.c
+++ b/kernel/locking/qspinlock.c
@@ -105,24 +105,37 @@ static inline struct mcs_spinlock *decode_tail(u32 tail)
* By using the whole 2nd least significant byte for the pending bit, we
* can allow better optimization of the lock acquisition for the pending
* bit holder.
+ *
+ * This internal structure is also used by the set_locked function which
+ * is not restricted to _Q_PENDING_BITS == 8.
*/
-#if _Q_PENDING_BITS == 8
-
struct __qspinlock {
union {
atomic_t val;
- struct {
#ifdef __LITTLE_ENDIAN
+ struct {
+ u8 locked;
+ u8 pending;
+ };
+ struct {
u16 locked_pending;
u16 tail;
+ };
#else
+ struct {
u16 tail;
u16 locked_pending;
-#endif
};
+ struct {
+ u8 reserved[2];
+ u8 pending;
+ u8 locked;
+ };
+#endif
};
};

+#if _Q_PENDING_BITS == 8
/**
* clear_pending_set_locked - take ownership and clear the pending bit.
* @lock: Pointer to queued spinlock structure
@@ -195,6 +208,19 @@ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
#endif /* _Q_PENDING_BITS == 8 */

/**
+ * set_locked - Set the lock bit and own the lock
+ * @lock: Pointer to queued spinlock structure
+ *
+ * *,*,0 -> *,0,1
+ */
+static __always_inline void set_locked(struct qspinlock *lock)
+{
+ struct __qspinlock *l = (void *)lock;
+
+ WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
+}
+
+/**
* queued_spin_lock_slowpath - acquire the queued spinlock
* @lock: Pointer to queued spinlock structure
* @val: Current value of the queued spinlock 32-bit word
@@ -329,8 +355,14 @@ queue:
* go away.
*
* *,x,y -> *,0,0
+ *
+ * this wait loop must use a load-acquire such that we match the
+ * store-release that clears the locked bit and create lock
+ * sequentiality; this is because the set_locked() function below
+ * does not imply a full barrier.
+ *
*/
- while ((val = atomic_read(&lock->val)) & _Q_LOCKED_PENDING_MASK)
+ while ((val = smp_load_acquire(&lock->val.counter)) & _Q_LOCKED_PENDING_MASK)
cpu_relax();

/*
@@ -338,15 +370,19 @@ queue:
*
* n,0,0 -> 0,0,1 : lock, uncontended
* *,0,0 -> *,0,1 : lock, contended
+ *
+ * If the queue head is the only one in the queue (lock value == tail),
+ * clear the tail code and grab the lock. Otherwise, we only need
+ * to grab the lock.
*/
for (;;) {
- new = _Q_LOCKED_VAL;
- if (val != tail)
- new |= val;
-
- old = atomic_cmpxchg(&lock->val, val, new);
- if (old == val)
+ if (val != tail) {
+ set_locked(lock);
break;
+ }
+ old = atomic_cmpxchg(&lock->val, val, _Q_LOCKED_VAL);
+ if (old == val)
+ goto release; /* No contention */

val = old;
}
@@ -354,12 +390,10 @@ queue:
/*
* contended path; wait for next, release.
*/
- if (new != _Q_LOCKED_VAL) {
- while (!(next = READ_ONCE(node->next)))
- cpu_relax();
+ while (!(next = READ_ONCE(node->next)))
+ cpu_relax();

- arch_mcs_spin_unlock_contended(&next->locked);
- }
+ arch_mcs_spin_unlock_contended(&next->locked);

release:
/*

\
 
 \ /
  Last update: 2015-05-08 15:41    [W:0.140 / U:0.452 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site