lkml.org 
[lkml]   [2015]   [Apr]   [16]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH 2/2] mtd: nand: Add support for Arasan Nand Flash Controller
Date
Added the basic driver for Arasan Nand Flash Controller used in
Zynq UltraScale+ MPSoC. It supports only Hw Ecc and upto 24bit
correction.

Signed-off-by: Punnaiah Choudary Kalluri <punnaia@xilinx.com>
---
drivers/mtd/nand/Kconfig | 7 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/arasan_nfc.c | 861 +++++++++++++++++++++++++++++++++++++++++
3 files changed, 869 insertions(+), 0 deletions(-)
create mode 100644 drivers/mtd/nand/arasan_nfc.c

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 5897d8d..64e497c 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -530,4 +530,11 @@ config MTD_NAND_HISI504
help
Enables support for NAND controller on Hisilicon SoC Hip04.

+config MTD_NAND_ARASAN
+ tristate "Support for Arasan Nand Flash controller"
+ depends on MTD_NAND
+ help
+ Enables the driver for the Arasan Nand Flash controller on
+ Zynq UltraScale+ MPSoC.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 582bbd05..fd863ea 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
+obj-$(CONFIG_MTD_NAND_ARASAN) += arasan_nfc.o

nand-objs := nand_base.o nand_bbt.o nand_timings.o
diff --git a/drivers/mtd/nand/arasan_nfc.c b/drivers/mtd/nand/arasan_nfc.c
new file mode 100644
index 0000000..a4b407b
--- /dev/null
+++ b/drivers/mtd/nand/arasan_nfc.c
@@ -0,0 +1,861 @@
+/*
+ * Arasan Nand Flash Controller Driver
+ *
+ * Copyright (C) 2014 - 2015 Xilinx, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it under
+ * the terms of the GNU General Public License version 2 as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ */
+
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_mtd.h>
+#include <linux/platform_device.h>
+
+#define DRIVER_NAME "arasan_nfc"
+#define EVNT_TIMEOUT 1000
+#define STATUS_TIMEOUT 2000
+
+#define PKT_OFST 0x00
+#define MEM_ADDR1_OFST 0x04
+#define MEM_ADDR2_OFST 0x08
+#define CMD_OFST 0x0C
+#define PROG_OFST 0x10
+#define INTR_STS_EN_OFST 0x14
+#define INTR_SIG_EN_OFST 0x18
+#define INTR_STS_OFST 0x1C
+#define READY_STS_OFST 0x20
+#define DMA_ADDR1_OFST 0x24
+#define FLASH_STS_OFST 0x28
+#define DATA_PORT_OFST 0x30
+#define ECC_OFST 0x34
+#define ECC_ERR_CNT_OFST 0x38
+#define ECC_SPR_CMD_OFST 0x3C
+#define ECC_ERR_CNT_1BIT_OFST 0x40
+#define ECC_ERR_CNT_2BIT_OFST 0x44
+#define DMA_ADDR0_OFST 0x50
+
+#define PKT_CNT_SHIFT 12
+
+#define ECC_ENABLE BIT(31)
+#define DMA_EN_MASK GENMASK(27, 26)
+#define DMA_ENABLE 0x2
+#define DMA_EN_SHIFT 26
+#define PAGE_SIZE_MASK GENMASK(25, 23)
+#define PAGE_SIZE_SHIFT 23
+#define PAGE_SIZE_512 0
+#define PAGE_SIZE_1K 5
+#define PAGE_SIZE_2K 1
+#define PAGE_SIZE_4K 2
+#define PAGE_SIZE_8K 3
+#define PAGE_SIZE_16K 4
+#define CMD2_SHIFT 8
+#define ADDR_CYCLES_SHIFT 28
+
+#define XFER_COMPLETE BIT(2)
+#define READ_READY BIT(1)
+#define WRITE_READY BIT(0)
+#define MBIT_ERROR BIT(3)
+#define ERR_INTRPT BIT(4)
+
+#define PROG_PGRD BIT(0)
+#define PROG_ERASE BIT(2)
+#define PROG_STATUS BIT(3)
+#define PROG_PGPROG BIT(4)
+#define PROG_RDID BIT(6)
+#define PROG_RDPARAM BIT(7)
+#define PROG_RST BIT(8)
+
+#define ONFI_STATUS_FAIL BIT(0)
+#define ONFI_STATUS_READY BIT(6)
+
+#define PG_ADDR_SHIFT 16
+#define BCH_MODE_SHIFT 25
+#define BCH_EN_SHIFT 27
+#define ECC_SIZE_SHIFT 16
+
+#define MEM_ADDR_MASK GENMASK(7, 0)
+#define BCH_MODE_MASK GENMASK(27, 25)
+
+#define CS_MASK GENMASK(31, 30)
+#define CS_SHIFT 30
+
+#define PAGE_ERR_CNT_MASK GENMASK(16, 8)
+#define PKT_ERR_CNT_MASK GENMASK(7, 0)
+
+#define ONFI_ID_LEN 8
+#define TEMP_BUF_SIZE 512
+
+/**
+ * struct anfc_ecc_matrix - Defines ecc information storage format
+ * @pagesize: Page size in bytes.
+ * @codeword_size: Code word size information.
+ * @eccbits: Number of ecc bits.
+ * @bch: Bch / Hamming mode enable/disable.
+ * @eccsize: Ecc size information.
+ */
+struct anfc_ecc_matrix {
+ u32 pagesize;
+ u32 codeword_size;
+ u8 eccbits;
+ u8 bch;
+ u16 eccsize;
+};
+
+static const struct anfc_ecc_matrix ecc_matrix[] = {
+ {512, 512, 1, 0, 0x3},
+ {512, 512, 4, 1, 0x7},
+ {512, 512, 8, 1, 0xD},
+ /* 2K byte page */
+ {2048, 512, 1, 0, 0xC},
+ {2048, 512, 4, 1, 0x1A},
+ {2048, 512, 8, 1, 0x34},
+ {2048, 512, 12, 1, 0x4E},
+ {2048, 1024, 24, 1, 0x54},
+ /* 4K byte page */
+ {4096, 512, 1, 0, 0x18},
+ {4096, 512, 4, 1, 0x34},
+ {4096, 512, 8, 1, 0x68},
+ {4096, 512, 12, 1, 0x9C},
+ {4096, 1024, 4, 1, 0xA8},
+ /* 8K byte page */
+ {8192, 512, 1, 0, 0x30},
+ {8192, 512, 4, 1, 0x68},
+ {8192, 512, 8, 1, 0xD0},
+ {8192, 512, 12, 1, 0x138},
+ {8192, 1024, 24, 1, 0x150},
+ /* 16K byte page */
+ {16384, 512, 1, 0, 0x60},
+ {16384, 512, 4, 1, 0xD0},
+ {16384, 512, 8, 1, 0x1A0},
+ {16384, 512, 12, 1, 0x270},
+ {16384, 1024, 24, 1, 0x2A0}
+};
+
+/**
+ * struct anfc - Defines the Arasan NAND flash driver instance
+ * @chip: NAND chip information structure.
+ * @mtd: MTD information structure.
+ * @parts: Pointer to the mtd_partition structure.
+ * @dev: Pointer to the device structure.
+ * @base: Virtual address of the NAND flash device.
+ * @curr_cmd: Current command issued.
+ * @dma: Dma enable/disable.
+ * @bch: Bch / Hamming mode enable/disable.
+ * @err: Error identifier.
+ * @iswriteoob: Identifies if oob write operation is required.
+ * @buf: Buffer used for read/write byte operations.
+ * @raddr_cycles: Row address cycle information.
+ * @caddr_cycles: Column address cycle information.
+ * @irq: irq number
+ * @page: Page address to be use for write oob operations.
+ * @pktsize: Packet size for read / write operation.
+ * @bufshift: Variable used for indexing buffer operation
+ * @rdintrmask: Interrupt mask value for read operation.
+ * @bufrdy: Completion event for buffer ready.
+ * @xfercomp: Completion event for transfer complete.
+ * @ecclayout: Ecc layout object
+ */
+struct anfc {
+ struct nand_chip chip;
+ struct mtd_info mtd;
+ struct mtd_partition *parts;
+ struct device *dev;
+
+ void __iomem *base;
+ int curr_cmd;
+
+ bool dma;
+ bool bch;
+ bool err;
+ bool iswriteoob;
+
+ u8 buf[TEMP_BUF_SIZE];
+
+ u16 raddr_cycles;
+ u16 caddr_cycles;
+
+ u32 irq;
+ u32 page;
+ u32 pktsize;
+ u32 bufshift;
+ u32 rdintrmask;
+
+ struct completion bufrdy;
+ struct completion xfercomp;
+ struct nand_ecclayout ecclayout;
+};
+
+static u8 anfc_page(u32 pagesize)
+{
+ switch (pagesize) {
+ case 512:
+ return PAGE_SIZE_512;
+ case 2048:
+ return PAGE_SIZE_2K;
+ case 4096:
+ return PAGE_SIZE_4K;
+ case 8192:
+ return PAGE_SIZE_8K;
+ case 16384:
+ return PAGE_SIZE_16K;
+ case 1024:
+ return PAGE_SIZE_1K;
+ default:
+ break;
+ }
+
+ return 0;
+}
+
+static inline void anfc_enable_intrs(struct anfc *nfc, u32 val)
+{
+ writel(val, nfc->base + INTR_STS_EN_OFST);
+ writel(val, nfc->base + INTR_SIG_EN_OFST);
+}
+
+static int anfc_wait_for_event(struct anfc *nfc, u32 event)
+{
+ struct completion *comp;
+ int ret;
+
+ if (event == XFER_COMPLETE)
+ comp = &nfc->xfercomp;
+ else
+ comp = &nfc->bufrdy;
+
+ ret = wait_for_completion_timeout(comp, msecs_to_jiffies(EVNT_TIMEOUT));
+
+ return ret;
+}
+
+static inline void anfc_setpktszcnt(struct anfc *nfc, u32 pktsize,
+ u32 pktcount)
+{
+ writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
+}
+
+static inline void anfc_set_eccsparecmd(struct anfc *nfc, u8 cmd1, u8 cmd2)
+{
+ writel(cmd1 | (cmd2 << CMD2_SHIFT) |
+ (nfc->caddr_cycles << ADDR_CYCLES_SHIFT),
+ nfc->base + ECC_SPR_CMD_OFST);
+}
+
+static void anfc_setpagecoladdr(struct anfc *nfc, u32 page, u16 col)
+{
+ u32 val;
+
+ writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
+
+ val = readl(nfc->base + MEM_ADDR2_OFST);
+ val = (val & ~MEM_ADDR_MASK) |
+ ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
+ writel(val, nfc->base + MEM_ADDR2_OFST);
+}
+
+static void anfc_prepare_cmd(struct anfc *nfc, u8 cmd1, u8 cmd2,
+ u8 dmamode, u32 pagesize, u8 addrcycles)
+{
+ u32 regval;
+
+ regval = cmd1 | (cmd2 << CMD2_SHIFT);
+ if (dmamode && nfc->dma)
+ regval |= DMA_ENABLE << DMA_EN_SHIFT;
+ if (addrcycles)
+ regval |= addrcycles << ADDR_CYCLES_SHIFT;
+ if (pagesize)
+ regval |= anfc_page(pagesize) << PAGE_SIZE_SHIFT;
+ writel(regval, nfc->base + CMD_OFST);
+}
+
+static int anfc_device_ready(struct mtd_info *mtd,
+ struct nand_chip *chip)
+{
+ u8 status;
+ u32 timeout = STATUS_TIMEOUT;
+
+ while (timeout--) {
+ chip->cmdfunc(mtd, NAND_CMD_STATUS, 0, 0);
+ status = chip->read_byte(mtd);
+ if (status & ONFI_STATUS_READY) {
+ if (status & ONFI_STATUS_FAIL)
+ return NAND_STATUS_FAIL;
+ return 0;
+ }
+ }
+
+ pr_err("%s timed out\n", __func__);
+ return -ETIMEDOUT;
+}
+
+static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+ if (nfc->dma)
+ nfc->rdintrmask = XFER_COMPLETE;
+ else
+ nfc->rdintrmask = READ_READY;
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ return 0;
+}
+
+static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page)
+{
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+ nfc->iswriteoob = true;
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+ nfc->iswriteoob = false;
+
+ return 0;
+}
+
+static void anfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ u32 i, pktcount, buf_rd_cnt = 0, pktsize;
+ u32 *bufptr = (u32 *)buf;
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+ dma_addr_t paddr = 0;
+
+ if (nfc->curr_cmd == NAND_CMD_READ0) {
+ pktsize = nfc->pktsize;
+ if (mtd->writesize % pktsize)
+ pktcount = mtd->writesize / pktsize + 1;
+ else
+ pktcount = mtd->writesize / pktsize;
+ } else {
+ pktsize = len;
+ pktcount = 1;
+ }
+
+ anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+ if (nfc->dma) {
+ paddr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
+ if (dma_mapping_error(nfc->dev, paddr)) {
+ dev_err(nfc->dev, "Read buffer mapping error");
+ return;
+ }
+ writel(paddr, nfc->base + DMA_ADDR0_OFST);
+ writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
+ anfc_enable_intrs(nfc, nfc->rdintrmask);
+ writel(PROG_PGRD, nfc->base + PROG_OFST);
+ anfc_wait_for_event(nfc, XFER_COMPLETE);
+ dma_unmap_single(nfc->dev, paddr, len, DMA_FROM_DEVICE);
+ return;
+ }
+
+ anfc_enable_intrs(nfc, nfc->rdintrmask);
+ writel(PROG_PGRD, nfc->base + PROG_OFST);
+
+ while (buf_rd_cnt < pktcount) {
+
+ anfc_wait_for_event(nfc, READ_READY);
+ buf_rd_cnt++;
+
+ if (buf_rd_cnt == pktcount)
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+ for (i = 0; i < pktsize / 4; i++)
+ bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
+
+ bufptr += (pktsize / 4);
+
+ if (buf_rd_cnt < pktcount)
+ anfc_enable_intrs(nfc, nfc->rdintrmask);
+ }
+
+ anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static void anfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ u32 buf_wr_cnt = 0, pktcount = 1, i, pktsize;
+ u32 *bufptr = (u32 *)buf;
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+ dma_addr_t paddr = 0;
+
+ if (nfc->iswriteoob) {
+ pktsize = len;
+ pktcount = 1;
+ } else {
+ pktsize = nfc->pktsize;
+ pktcount = mtd->writesize / pktsize;
+ }
+
+ anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+ if (nfc->dma) {
+ paddr = dma_map_single(nfc->dev, (void *)buf, len,
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(nfc->dev, paddr)) {
+ dev_err(nfc->dev, "Write buffer mapping error");
+ return;
+ }
+ writel(paddr, nfc->base + DMA_ADDR0_OFST);
+ writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+ writel(PROG_PGPROG, nfc->base + PROG_OFST);
+ anfc_wait_for_event(nfc, XFER_COMPLETE);
+ dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE);
+ return;
+ }
+
+ anfc_enable_intrs(nfc, WRITE_READY);
+ writel(PROG_PGPROG, nfc->base + PROG_OFST);
+
+ while (buf_wr_cnt < pktcount) {
+ anfc_wait_for_event(nfc, WRITE_READY);
+
+ buf_wr_cnt++;
+ if (buf_wr_cnt == pktcount)
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+ for (i = 0; i < (pktsize / 4); i++)
+ writel(bufptr[i], nfc->base + DATA_PORT_OFST);
+
+ bufptr += (pktsize / 4);
+
+ if (buf_wr_cnt < pktcount)
+ anfc_enable_intrs(nfc, WRITE_READY);
+ }
+
+ anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static int anfc_read_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ u32 val;
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+ anfc_set_eccsparecmd(nfc, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
+
+ val = readl(nfc->base + CMD_OFST);
+ val = val | ECC_ENABLE;
+ writel(val, nfc->base + CMD_OFST);
+
+ if (nfc->dma)
+ nfc->rdintrmask = XFER_COMPLETE;
+ else
+ nfc->rdintrmask = READ_READY;
+
+ if (!nfc->bch)
+ nfc->rdintrmask = MBIT_ERROR;
+
+ chip->read_buf(mtd, buf, mtd->writesize);
+
+ val = readl(nfc->base + ECC_ERR_CNT_OFST);
+ if (nfc->bch) {
+ mtd->ecc_stats.corrected += val & PAGE_ERR_CNT_MASK;
+ } else {
+ val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
+ mtd->ecc_stats.corrected += val;
+ val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
+ mtd->ecc_stats.failed += val;
+ /* Clear ecc error count register 1Bit, 2Bit */
+ writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
+ writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
+ }
+ nfc->err = false;
+
+ if (oob_required)
+ chip->ecc.read_oob(mtd, chip, page);
+
+ return 0;
+}
+
+static int anfc_write_page_hwecc(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf,
+ int oob_required)
+{
+ u32 val, i;
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+ uint8_t *ecc_calc = chip->buffers->ecccalc;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+ anfc_set_eccsparecmd(nfc, NAND_CMD_RNDIN, 0);
+
+ val = readl(nfc->base + CMD_OFST);
+ val = val | ECC_ENABLE;
+ writel(val, nfc->base + CMD_OFST);
+
+ chip->write_buf(mtd, buf, mtd->writesize);
+
+ if (oob_required) {
+ anfc_device_ready(mtd, chip);
+ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, nfc->page);
+ if (nfc->dma)
+ nfc->rdintrmask = XFER_COMPLETE;
+ else
+ nfc->rdintrmask = READ_READY;
+ chip->read_buf(mtd, ecc_calc, mtd->oobsize);
+ for (i = 0; i < chip->ecc.total; i++)
+ chip->oob_poi[eccpos[i]] = ecc_calc[eccpos[i]];
+ chip->ecc.write_oob(mtd, chip, nfc->page);
+ }
+
+ return 0;
+}
+
+static u8 anfc_read_byte(struct mtd_info *mtd)
+{
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+ return nfc->buf[nfc->bufshift++];
+}
+
+static void anfc_readfifo(struct anfc *nfc, u32 prog, u32 size)
+{
+ u32 i, *bufptr = (u32 *)&nfc->buf[0];
+
+ anfc_enable_intrs(nfc, READ_READY);
+
+ writel(prog, nfc->base + PROG_OFST);
+ anfc_wait_for_event(nfc, READ_READY);
+
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+ for (i = 0; i < size / 4; i++)
+ bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
+
+ anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static int anfc_ecc_init(struct mtd_info *mtd,
+ struct nand_ecc_ctrl *ecc)
+{
+ u32 oob_index, i, ecc_addr, regval, bchmode = 0;
+ struct nand_chip *nand_chip = mtd->priv;
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+ int found = -1;
+
+ nand_chip->ecc.mode = NAND_ECC_HW;
+ nand_chip->ecc.read_page = anfc_read_page_hwecc;
+ nand_chip->ecc.write_page = anfc_write_page_hwecc;
+ nand_chip->ecc.write_oob = anfc_write_oob;
+ nand_chip->ecc.read_oob = anfc_read_oob;
+
+ for (i = 0; i < sizeof(ecc_matrix) / sizeof(struct anfc_ecc_matrix);
+ i++) {
+ if ((ecc_matrix[i].pagesize == mtd->writesize) &&
+ (ecc_matrix[i].codeword_size >= nand_chip->ecc_step_ds)) {
+ if (ecc_matrix[i].eccbits >=
+ nand_chip->ecc_strength_ds) {
+ found = i;
+ break;
+ }
+ found = i;
+ }
+ }
+
+ if (found < 0) {
+ dev_err(nfc->dev, "ECC scheme not supported");
+ return 1;
+ }
+ if (ecc_matrix[found].bch) {
+ switch (ecc_matrix[found].eccbits) {
+ case 12:
+ bchmode = 0x1;
+ break;
+ case 8:
+ bchmode = 0x2;
+ break;
+ case 4:
+ bchmode = 0x3;
+ break;
+ case 24:
+ bchmode = 0x4;
+ break;
+ default:
+ bchmode = 0x0;
+ }
+ }
+
+ nand_chip->ecc.strength = ecc_matrix[found].eccbits;
+ nand_chip->ecc.size = ecc_matrix[found].codeword_size;
+ nand_chip->ecc.steps = ecc_matrix[found].pagesize /
+ ecc_matrix[found].codeword_size;
+ nand_chip->ecc.bytes = ecc_matrix[found].eccsize /
+ nand_chip->ecc.steps;
+ nfc->ecclayout.eccbytes = ecc_matrix[found].eccsize;
+ nfc->bch = ecc_matrix[found].bch;
+ oob_index = nand_chip->onfi_params.spare_bytes_per_page -
+ nfc->ecclayout.eccbytes;
+ ecc_addr = mtd->writesize + oob_index;
+
+ for (i = 0; i < nand_chip->ecc.size; i++)
+ nfc->ecclayout.eccpos[i] = oob_index + i;
+
+ nfc->ecclayout.oobfree->offset = 2;
+ nfc->ecclayout.oobfree->length = oob_index -
+ nfc->ecclayout.oobfree->offset;
+
+ nand_chip->ecc.layout = &(nfc->ecclayout);
+ regval = ecc_addr | (ecc_matrix[found].eccsize << ECC_SIZE_SHIFT) |
+ (ecc_matrix[found].bch << BCH_EN_SHIFT);
+ writel(regval, nfc->base + ECC_OFST);
+
+ regval = readl(nfc->base + MEM_ADDR2_OFST);
+ regval = (regval & ~(BCH_MODE_MASK)) | (bchmode << BCH_MODE_SHIFT);
+ writel(regval, nfc->base + MEM_ADDR2_OFST);
+
+ if (nand_chip->ecc_step_ds >= 1024)
+ nfc->pktsize = 1024;
+ else
+ nfc->pktsize = 512;
+
+ return 0;
+}
+
+static void anfc_cmd_function(struct mtd_info *mtd,
+ unsigned int cmd, int column, int page_addr)
+{
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+ bool wait = false, read = false;
+ u32 addrcycles, prog;
+ u32 *bufptr = (u32 *)&nfc->buf[0];
+
+ nfc->bufshift = 0;
+ nfc->curr_cmd = cmd;
+
+ if (page_addr == -1)
+ page_addr = 0;
+ if (column == -1)
+ column = 0;
+
+ switch (cmd) {
+ case NAND_CMD_RESET:
+ anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
+ prog = PROG_RST;
+ wait = true;
+ break;
+ case NAND_CMD_SEQIN:
+ addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
+ nfc->page = page_addr;
+ anfc_prepare_cmd(nfc, cmd, NAND_CMD_PAGEPROG, 1,
+ mtd->writesize, addrcycles);
+ anfc_setpagecoladdr(nfc, page_addr, column);
+ break;
+ case NAND_CMD_READOOB:
+ column += mtd->writesize;
+ case NAND_CMD_READ0:
+ case NAND_CMD_READ1:
+ addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
+ anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1,
+ mtd->writesize, addrcycles);
+ anfc_setpagecoladdr(nfc, page_addr, column);
+ break;
+ case NAND_CMD_RNDOUT:
+ anfc_prepare_cmd(nfc, cmd, NAND_CMD_RNDOUTSTART, 1,
+ mtd->writesize, 2);
+ anfc_setpagecoladdr(nfc, page_addr, column);
+ if (nfc->dma)
+ nfc->rdintrmask = XFER_COMPLETE;
+ else
+ nfc->rdintrmask = READ_READY;
+ break;
+ case NAND_CMD_PARAM:
+ anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
+ anfc_setpagecoladdr(nfc, page_addr, column);
+ anfc_setpktszcnt(nfc, sizeof(struct nand_onfi_params), 1);
+ anfc_readfifo(nfc, PROG_RDPARAM,
+ sizeof(struct nand_onfi_params));
+ break;
+ case NAND_CMD_READID:
+ anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
+ anfc_setpagecoladdr(nfc, page_addr, column);
+ anfc_setpktszcnt(nfc, ONFI_ID_LEN, 1);
+ anfc_readfifo(nfc, PROG_RDID, ONFI_ID_LEN);
+ break;
+ case NAND_CMD_ERASE1:
+ addrcycles = nfc->raddr_cycles;
+ prog = PROG_ERASE;
+ anfc_prepare_cmd(nfc, cmd, NAND_CMD_ERASE2, 0, 0, addrcycles);
+ column = page_addr & 0xffff;
+ page_addr = (page_addr >> PG_ADDR_SHIFT) & 0xffff;
+ anfc_setpagecoladdr(nfc, page_addr, column);
+ wait = true;
+ break;
+ case NAND_CMD_STATUS:
+ anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
+ anfc_setpktszcnt(nfc, 1, 1);
+ anfc_setpagecoladdr(nfc, page_addr, column);
+ prog = PROG_STATUS;
+ wait = read = true;
+ break;
+ default:
+ return;
+ }
+
+ if (wait) {
+ anfc_enable_intrs(nfc, XFER_COMPLETE);
+ writel(prog, nfc->base + PROG_OFST);
+ anfc_wait_for_event(nfc, XFER_COMPLETE);
+ }
+
+ if (read)
+ bufptr[0] = readl(nfc->base + FLASH_STS_OFST);
+}
+
+static void anfc_select_chip(struct mtd_info *mtd, int num)
+{
+ u32 val;
+ struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+ if (num == -1)
+ return;
+
+ val = readl(nfc->base + MEM_ADDR2_OFST);
+ val = (val & ~(CS_MASK)) | (num << CS_SHIFT);
+ writel(val, nfc->base + MEM_ADDR2_OFST);
+}
+
+static irqreturn_t anfc_irq_handler(int irq, void *ptr)
+{
+ struct anfc *nfc = ptr;
+ u32 regval = 0, status;
+
+ status = readl(nfc->base + INTR_STS_OFST);
+ if (status & XFER_COMPLETE) {
+ complete(&nfc->xfercomp);
+ regval |= XFER_COMPLETE;
+ }
+
+ if (status & READ_READY) {
+ complete(&nfc->bufrdy);
+ regval |= READ_READY;
+ }
+
+ if (status & WRITE_READY) {
+ complete(&nfc->bufrdy);
+ regval |= WRITE_READY;
+ }
+
+ if (status & MBIT_ERROR) {
+ nfc->err = true;
+ complete(&nfc->bufrdy);
+ regval |= MBIT_ERROR;
+ }
+
+ if (regval) {
+ writel(regval, nfc->base + INTR_STS_OFST);
+ writel(0, nfc->base + INTR_STS_EN_OFST);
+ writel(0, nfc->base + INTR_SIG_EN_OFST);
+
+ return IRQ_HANDLED;
+ }
+
+ return IRQ_NONE;
+}
+
+static int anfc_probe(struct platform_device *pdev)
+{
+ struct anfc *nfc;
+ struct mtd_info *mtd;
+ struct nand_chip *nand_chip;
+ struct resource *res;
+ struct mtd_part_parser_data ppdata;
+ int err;
+
+ nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ nfc->base = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(nfc->base))
+ return PTR_ERR(nfc->base);
+
+ mtd = &nfc->mtd;
+ nand_chip = &nfc->chip;
+ nand_chip->priv = nfc;
+ mtd->priv = nand_chip;
+ mtd->owner = THIS_MODULE;
+ mtd->name = DRIVER_NAME;
+ nfc->dev = &pdev->dev;
+
+ nand_chip->cmdfunc = anfc_cmd_function;
+ nand_chip->waitfunc = anfc_device_ready;
+ nand_chip->chip_delay = 30;
+ nand_chip->read_buf = anfc_read_buf;
+ nand_chip->write_buf = anfc_write_buf;
+ nand_chip->read_byte = anfc_read_byte;
+ nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+ nand_chip->select_chip = anfc_select_chip;
+ mtd->size = nand_chip->chipsize;
+ nfc->dma = of_property_read_bool(pdev->dev.of_node,
+ "arasan,has-mdma");
+ platform_set_drvdata(pdev, nfc);
+ init_completion(&nfc->bufrdy);
+ init_completion(&nfc->xfercomp);
+ nfc->irq = platform_get_irq(pdev, 0);
+ err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
+ 0, "arasannfc", nfc);
+ if (err)
+ return err;
+
+ if (nand_scan_ident(mtd, 1, NULL)) {
+ dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
+ return -ENXIO;
+ }
+ nfc->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
+ nfc->caddr_cycles = (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
+
+ if (anfc_ecc_init(mtd, &nand_chip->ecc))
+ return -ENXIO;
+
+ if (nand_scan_tail(mtd)) {
+ dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
+ return -ENXIO;
+ }
+
+ ppdata.of_node = pdev->dev.of_node;
+
+ mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);
+ return 0;
+}
+
+static int anfc_remove(struct platform_device *pdev)
+{
+ struct anfc *nfc = platform_get_drvdata(pdev);
+
+ nand_release(&nfc->mtd);
+
+ return 0;
+}
+
+static const struct of_device_id anfc_ids[] = {
+ { .compatible = "arasan,nfc-v3p10" },
+ { }
+};
+MODULE_DEVICE_TABLE(of, anfc_ids);
+
+static struct platform_driver anfc_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ .of_match_table = anfc_ids,
+ },
+ .probe = anfc_probe,
+ .remove = anfc_remove,
+};
+module_platform_driver(anfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Xilinx, Inc");
+MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
--
1.7.4


\
 
 \ /
  Last update: 2015-04-16 16:41    [W:1.043 / U:0.552 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site