lkml.org 
[lkml]   [2015]   [Nov]   [19]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
From
SubjectRe: [PATCH 4/4] locking: Introduce smp_cond_acquire()
On Wed, Nov 18, 2015 at 11:25:14AM +0000, Will Deacon wrote:
> On Tue, Nov 17, 2015 at 01:01:09PM -0800, Paul E. McKenney wrote:
> > On Tue, Nov 17, 2015 at 11:51:10AM +0000, Will Deacon wrote:
> > > On Mon, Nov 16, 2015 at 01:58:49PM -0800, Linus Torvalds wrote:
> > > > On Mon, Nov 16, 2015 at 8:24 AM, Will Deacon <will.deacon@arm.com> wrote:
> > > > >
> > > > > ... or we upgrade spin_unlock_wait to a LOCK operation, which might be
> > > > > slightly cheaper than spin_lock()+spin_unlock().
> > > >
> > > > So traditionally the real concern has been the cacheline ping-pong
> > > > part of spin_unlock_wait(). I think adding a memory barrier (that
> > > > doesn't force any exclusive states, just ordering) to it is fine, but
> > > > I don't think we want to necessarily have it have to get the cacheline
> > > > into exclusive state.
> > >
> > > The problem is, I don't think the memory-barrier buys you anything in
> > > the context of Boqun's example. In fact, he already had smp_mb() either
> > > side of the spin_unlock_wait() and its still broken on arm64 and ppc.
> > >
> > > Paul is proposing adding a memory barrier after spin_lock() in the racing
> > > thread, but I personally think people will forget to add that.
> >
> > A mechanical check would certainly make me feel better about it, so that
> > any lock that was passed to spin_unlock_wait() was required to have all
> > acquisitions followed by smp_mb__after_unlock_lock() or some such.
> > But I haven't yet given up on finding a better solution.
>
> Right-o. I'll hack together the arm64 spin_unlock_wait fix, but hold off
> merging it for a few weeks in case we get struck by a sudden flash of
> inspiration.

For completeness, here's what I've currently got. I've failed to measure
any performance impact on my 8-core systems, but that's not surprising.

Will

--->8

From da14adc1aef2f12b7a7def4d6b7dde254a91ebf1 Mon Sep 17 00:00:00 2001
From: Will Deacon <will.deacon@arm.com>
Date: Thu, 19 Nov 2015 17:48:31 +0000
Subject: [PATCH] arm64: spinlock: serialise spin_unlock_wait against
concurrent lockers

Boqun Feng reported a rather nasty ordering issue with spin_unlock_wait
on architectures implementing spin_lock with LL/SC sequences and acquire
semantics:

| CPU 1 CPU 2 CPU 3
| ================== ==================== ==============
| spin_unlock(&lock);
| spin_lock(&lock):
| r1 = *lock; // r1 == 0;
| o = READ_ONCE(object); // reordered here
| object = NULL;
| smp_mb();
| spin_unlock_wait(&lock);
| *lock = 1;
| smp_mb();
| o->dead = true;
| if (o) // true
| BUG_ON(o->dead); // true!!

The crux of the problem is that spin_unlock_wait(&lock) can return on
CPU 1 whilst CPU 2 is in the process of taking the lock. This can be
resolved by upgrading spin_unlock_wait to a LOCK operation, forcing it
to serialise against a concurrent locker and giving it acquire semantics
in the process (although it is not at all clear whether this is needed -
different callers seem to assume different things about the barrier
semantics and architectures are similarly disjoint in their
implementations of the macro).

This patch implements spin_unlock_wait using an LL/SC sequence with
acquire semantics on arm64. For v8.1 systems with the LSE atomics, the
exclusive writeback is omitted, since the spin_lock operation is
indivisible and no intermediate state can be observed.

Signed-off-by: Will Deacon <will.deacon@arm.com>
---
arch/arm64/include/asm/spinlock.h | 24 ++++++++++++++++++++++--
1 file changed, 22 insertions(+), 2 deletions(-)

diff --git a/arch/arm64/include/asm/spinlock.h b/arch/arm64/include/asm/spinlock.h
index c85e96d174a5..b531791a75ff 100644
--- a/arch/arm64/include/asm/spinlock.h
+++ b/arch/arm64/include/asm/spinlock.h
@@ -26,9 +26,29 @@
* The memory barriers are implicit with the load-acquire and store-release
* instructions.
*/
+static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
+{
+ unsigned int tmp;
+ arch_spinlock_t lockval;

-#define arch_spin_unlock_wait(lock) \
- do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
+ asm volatile(
+" sevl\n"
+"1: wfe\n"
+"2: ldaxr %w0, %2\n"
+" eor %w1, %w0, %w0, ror #16\n"
+" cbnz %w1, 1b\n"
+ ARM64_LSE_ATOMIC_INSN(
+ /* LL/SC */
+" stxr %w1, %w0, %2\n"
+ /* Serialise against any concurrent lockers */
+" cbnz %w1, 2b\n",
+ /* LSE atomics */
+" nop\n"
+" nop\n")
+ : "=&r" (lockval), "=&r" (tmp), "+Q" (*lock)
+ :
+ : "memory");
+}

#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)

--
2.1.4


\
 
 \ /
  Last update: 2015-11-19 19:21    [W:0.236 / U:0.136 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site