lkml.org 
[lkml]   [2012]   [Jul]   [11]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
Date
SubjectRe: [PATCH 01/16] sched: track the runnable average on a per-task entitiy basis
On Wed, Jun 27, 2012 at 11:06 PM, Namhyung Kim <namhyung@kernel.org> wrote:
> Hi,
>
> Some nitpicks and questions.
>
>
> On Wed, 27 Jun 2012 19:24:14 -0700, Paul Turner wrote:
>> Instead of tracking averaging the load parented by a cfs_rq, we can track
>> entity load directly. With the load for a given cfs_Rq then being the sum of
>
> s/cfs_Rq/cfs_rq/
>
>
>> its children.
>>
>> To do this we represent the historical contribution to runnable average within each
>> trailing 1024us of execution as the coefficients of a geometric series.
>>
>> We can express this for a given task t as:
>> runnable_sum(t) = \Sum u_i * y^i ,
>> load(t) = weight_t * runnable_sum(t) / (\Sum 1024 * y^i)
>>
>
> This "\Sum 1024 *y^i" is the runnable(_avg)_period, right?

Yes.

>
>
>> Where: u_i is the usage in the last i`th 1024us period (approximately 1ms) ~ms
>> and y is chosen such that y^k = 1/2. We currently choose k to be 32 which
>> roughly translates to about a sched period.
>>
>> Signed-off-by: Paul Turner <pjt@google.com>
>> ---
>> include/linux/sched.h | 8 +++
>> kernel/sched/debug.c | 4 ++
>> kernel/sched/fair.c | 128 +++++++++++++++++++++++++++++++++++++++++++++++++
>> 3 files changed, 140 insertions(+), 0 deletions(-)
>>
>> diff --git a/include/linux/sched.h b/include/linux/sched.h
>> index 9dced2e..5bf5c79 100644
>> --- a/include/linux/sched.h
>> +++ b/include/linux/sched.h
>> @@ -1136,6 +1136,11 @@ struct load_weight {
>> unsigned long weight, inv_weight;
>> };
>>
>> +struct sched_avg {
>> + u32 runnable_avg_sum, runnable_avg_period;
>> + u64 last_runnable_update;
>> +};
>> +
>> #ifdef CONFIG_SCHEDSTATS
>> struct sched_statistics {
>> u64 wait_start;
>> @@ -1196,6 +1201,9 @@ struct sched_entity {
>> /* rq "owned" by this entity/group: */
>> struct cfs_rq *my_q;
>> #endif
>> +#ifdef CONFIG_SMP
>> + struct sched_avg avg;
>> +#endif
>> };
>>
>> struct sched_rt_entity {
>> diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
>> index c09a4e7..cd5ef23 100644
>> --- a/kernel/sched/debug.c
>> +++ b/kernel/sched/debug.c
>> @@ -85,6 +85,10 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
>> P(se->statistics.wait_count);
>> #endif
>> P(se->load.weight);
>> +#ifdef CONFIG_SMP
>> + P(se->avg.runnable_avg_sum);
>> + P(se->avg.runnable_avg_period);
>> +#endif
>> #undef PN
>> #undef P
>> }
>> diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
>> index 3704ad3..864a122 100644
>> --- a/kernel/sched/fair.c
>> +++ b/kernel/sched/fair.c
>> @@ -976,6 +976,125 @@ static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
>> }
>> #endif /* CONFIG_FAIR_GROUP_SCHED */
>>
>> +#ifdef CONFIG_SMP
>> +/*
>> + * Approximate:
>> + * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
>> + */
>> +static __always_inline u64 decay_load(u64 val, int n)
>> +{
>> + for (; n && val; n--) {
>> + val *= 4008;
>> + val >>= 12;
>> + }
>> +
>> + return val;
>> +}
>> +
>> +/* We can represent the historical contribution to runnable average as the
>> + * coefficients of a geometric series. To do this we sub-divide our runnable
>> + * history into segments of approximately 1ms (1024us); label the segment that
>> + * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
>> + *
>> + * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
>> + * p0 p1 p1
> p2
>
>> + * (now) (~1ms ago) (~2ms ago)
>> + *
>> + * Let u_i denote the fraction of p_i that the entity was runnable.
>> + *
>> + * We then designate the fractions u_i as our co-efficients, yielding the
>> + * following representation of historical load:
>> + * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
>> + *
>> + * We choose y based on the with of a reasonably scheduling period, fixing:
> width ?
>> + * y^32 = 0.5
>> + *
>> + * This means that the contribution to load ~32ms ago (u_32) will be weighted
>> + * approximately half as much as the contribution to load within the last ms
>> + * (u_0).
>> + *
>> + * When a period "rolls over" and we have new u_0`, multiplying the previous
>> + * sum again by y is sufficient to update:
>> + * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
>> + * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1]
> u_{i+1}]
>
>> + */
>> +static __always_inline int __update_entity_runnable_avg(u64 now,
>
> Is the return value used by elsewhere?
>

Yes, it's later used to trigger updates as we accumulate new usage
periods (1024us increments).

> Thanks,
> Namhyung
>
>
>> + struct sched_avg *sa,
>> + int runnable)
>> +{
>> + u64 delta;
>> + int delta_w, decayed = 0;
>> +
>> + delta = now - sa->last_runnable_update;
>> + /*
>> + * This should only happen when time goes backwards, which it
>> + * unfortunately does during sched clock init when we swap over to TSC.
>> + */
>> + if ((s64)delta < 0) {
>> + sa->last_runnable_update = now;
>> + return 0;
>> + }
>> +
>> + /*
>> + * Use 1024ns as the unit of measurement since it's a reasonable
>> + * approximation of 1us and fast to compute.
>> + */
>> + delta >>= 10;
>> + if (!delta)
>> + return 0;
>> + sa->last_runnable_update = now;
>> +
>> + /* delta_w is the amount already accumulated against our next period */
>> + delta_w = sa->runnable_avg_period % 1024;
>> + if (delta + delta_w >= 1024) {
>> + /* period roll-over */
>> + decayed = 1;
>> +
>> + /*
>> + * Now that we know we're crossing a period boundary, figure
>> + * out how much from delta we need to complete the current
>> + * period and accrue it.
>> + */
>> + delta_w = 1024 - delta_w;
>> + BUG_ON(delta_w > delta);
>> + do {
>> + if (runnable)
>> + sa->runnable_avg_sum += delta_w;
>> + sa->runnable_avg_period += delta_w;
>> +
>> + /*
>> + * Remainder of delta initiates a new period, roll over
>> + * the previous.
>> + */
>> + sa->runnable_avg_sum =
>> + decay_load(sa->runnable_avg_sum, 1);
>> + sa->runnable_avg_period =
>> + decay_load(sa->runnable_avg_period, 1);
>> +
>> + delta -= delta_w;
>> + /* New period is empty */
>> + delta_w = 1024;
>> + } while (delta >= 1024);
>> + }
>> +
>> + /* Remainder of delta accrued against u_0` */
>> + if (runnable)
>> + sa->runnable_avg_sum += delta;
>> + sa->runnable_avg_period += delta;
>> +
>> + return decayed;
>> +}
>> +
>> +/* Update a sched_entity's runnable average */
>> +static inline void update_entity_load_avg(struct sched_entity *se)
>> +{
>> + __update_entity_runnable_avg(rq_of(cfs_rq_of(se))->clock_task, &se->avg,
>> + se->on_rq);
>> +}
>> +#else
>> +static inline void update_entity_load_avg(struct sched_entity *se) {}
>> +#endif
>> +
>> static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
>> {
>> #ifdef CONFIG_SCHEDSTATS
>> @@ -1102,6 +1221,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
>> */
>> update_curr(cfs_rq);
>> update_cfs_load(cfs_rq, 0);
>> + update_entity_load_avg(se);
>> account_entity_enqueue(cfs_rq, se);
>> update_cfs_shares(cfs_rq);
>>
>> @@ -1176,6 +1296,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
>> * Update run-time statistics of the 'current'.
>> */
>> update_curr(cfs_rq);
>> + update_entity_load_avg(se);
>>
>> update_stats_dequeue(cfs_rq, se);
>> if (flags & DEQUEUE_SLEEP) {
>> @@ -1345,6 +1466,8 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
>> update_stats_wait_start(cfs_rq, prev);
>> /* Put 'current' back into the tree. */
>> __enqueue_entity(cfs_rq, prev);
>> + /* in !on_rq case, update occurred at dequeue */
>> + update_entity_load_avg(prev);
>> }
>> cfs_rq->curr = NULL;
>> }
>> @@ -1358,6 +1481,11 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
>> update_curr(cfs_rq);
>>
>> /*
>> + * Ensure that runnable average is periodically updated.
>> + */
>> + update_entity_load_avg(curr);
>> +
>> + /*
>> * Update share accounting for long-running entities.
>> */
>> update_entity_shares_tick(cfs_rq);


\
 
 \ /
  Last update: 2012-07-12 03:01    [W:0.135 / U:1.772 seconds]
©2003-2018 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site