lkml.org 
[lkml]   [2008]   [Aug]   [12]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
SubjectRe: [git pull] core fixes
From
Date
On Tue, 2008-08-12 at 16:13 +1000, Nick Piggin wrote:
> On Tuesday 12 August 2008 08:20, Ingo Molnar wrote:

> > Nick Piggin (1):
> > generic-ipi: fix stack and rcu interaction bug in
> > smp_call_function_mask()
>
> I'm still not 100% sure that I have this patch right... I might have seen
> a lockup trace implicating the smp call function path... which may have
> been due to some other problem or a different bug in the new call function
> code, but if some more people can take a look at it before merging?

Right - so we cannot use synchronize_rcu() because the caller of
smp_call_function_mask() might not be in a preemptible context.

Therefore you implement this barrier like function, that uses the single
call ipi to validate that all the cpus are done processing the
call_function_queue - because that is with IRQs disabled, and this other
IPI cannot interrupt. Thereby guaranteeing that there are no more
references to any former elements on said list.

Clever. But as you say, rather expensive.

I can't for the moment poke any holes in this, so

Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl

---
commit cc7a486cac78f6fc1a24e8cd63036bae8d2ab431
Author: Nick Piggin <nickpiggin@yahoo.com.au>
Date: Mon Aug 11 13:49:30 2008 +1000

generic-ipi: fix stack and rcu interaction bug in smp_call_function_mask()

* Venki Pallipadi <venkatesh.pallipadi@intel.com> wrote:

> Found a OOPS on a big SMP box during an overnight reboot test with
> upstream git.
>
> Suresh and I looked at the oops and looks like the root cause is in
> generic_smp_call_function_interrupt() and smp_call_function_mask() with
> wait parameter.
>
> The actual oops looked like
>
> [ 11.277260] BUG: unable to handle kernel paging request at ffff8802ffffffff
> [ 11.277815] IP: [<ffff8802ffffffff>] 0xffff8802ffffffff
> [ 11.278155] PGD 202063 PUD 0
> [ 11.278576] Oops: 0010 [1] SMP
> [ 11.279006] CPU 5
> [ 11.279336] Modules linked in:
> [ 11.279752] Pid: 0, comm: swapper Not tainted 2.6.27-rc2-00020-g685d87f #290
> [ 11.280039] RIP: 0010:[<ffff8802ffffffff>] [<ffff8802ffffffff>] 0xffff8802ffffffff
> [ 11.280692] RSP: 0018:ffff88027f1f7f70 EFLAGS: 00010086
> [ 11.280976] RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 0000000000000000
> [ 11.281264] RDX: 0000000000004f4e RSI: 0000000000000001 RDI: 0000000000000000
> [ 11.281624] RBP: ffff88027f1f7f98 R08: 0000000000000001 R09: ffffffff802509af
> [ 11.281925] R10: ffff8800280c2780 R11: 0000000000000000 R12: ffff88027f097d48
> [ 11.282214] R13: ffff88027f097d70 R14: 0000000000000005 R15: ffff88027e571000
> [ 11.282502] FS: 0000000000000000(0000) GS:ffff88027f1c3340(0000) knlGS:0000000000000000
> [ 11.283096] CS: 0010 DS: 0018 ES: 0018 CR0: 000000008005003b
> [ 11.283382] CR2: ffff8802ffffffff CR3: 0000000000201000 CR4: 00000000000006e0
> [ 11.283760] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
> [ 11.284048] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
> [ 11.284337] Process swapper (pid: 0, threadinfo ffff88027f1f2000, task ffff88027f1f0640)
> [ 11.284936] Stack: ffffffff80250963 0000000000000212 0000000000ee8c78 0000000000ee8a66
> [ 11.285802] ffff88027e571550 ffff88027f1f7fa8 ffffffff8021adb5 ffff88027f1f3e40
> [ 11.286599] ffffffff8020bdd6 ffff88027f1f3e40 <EOI> ffff88027f1f3ef8 0000000000000000
> [ 11.287120] Call Trace:
> [ 11.287768] <IRQ> [<ffffffff80250963>] ? generic_smp_call_function_interrupt+0x61/0x12c
> [ 11.288354] [<ffffffff8021adb5>] smp_call_function_interrupt+0x17/0x27
> [ 11.288744] [<ffffffff8020bdd6>] call_function_interrupt+0x66/0x70
> [ 11.289030] <EOI> [<ffffffff8024ab3b>] ? clockevents_notify+0x19/0x73
> [ 11.289380] [<ffffffff803b9b75>] ? acpi_idle_enter_simple+0x18b/0x1fa
> [ 11.289760] [<ffffffff803b9b6b>] ? acpi_idle_enter_simple+0x181/0x1fa
> [ 11.290051] [<ffffffff8053aeca>] ? cpuidle_idle_call+0x70/0xa2
> [ 11.290338] [<ffffffff80209f61>] ? cpu_idle+0x5f/0x7d
> [ 11.290723] [<ffffffff8060224a>] ? start_secondary+0x14d/0x152
> [ 11.291010]
> [ 11.291287]
> [ 11.291654] Code: Bad RIP value.
> [ 11.292041] RIP [<ffff8802ffffffff>] 0xffff8802ffffffff
> [ 11.292380] RSP <ffff88027f1f7f70>
> [ 11.292741] CR2: ffff8802ffffffff
> [ 11.310951] ---[ end trace 137c54d525305f1c ]---
>
> The problem is with the following sequence of events:
>
> - CPU A calls smp_call_function_mask() for CPU B with wait parameter
> - CPU A sets up the call_function_data on the stack and does an rcu add to
> call_function_queue
> - CPU A waits until the WAIT flag is cleared
> - CPU B gets the call function interrupt and starts going through the
> call_function_queue
> - CPU C also gets some other call function interrupt and starts going through
> the call_function_queue
> - CPU C, which is also going through the call_function_queue, starts referencing
> CPU A's stack, as that element is still in call_function_queue
> - CPU B finishes the function call that CPU A set up and as there are no other
> references to it, rcu deletes the call_function_data (which was from CPU A
> stack)
> - CPU B sees the wait flag and just clears the flag (no call_rcu to free)
> - CPU A which was waiting on the flag continues executing and the stack
> contents change
>
> - CPU C is still in rcu_read section accessing the CPU A's stack sees
> inconsistent call_funation_data and can try to execute
> function with some random pointer, causing stack corruption for A
> (by clearing the bits in mask field) and oops.

Nice debugging work.

I'd suggest something like the attached (boot tested) patch as the simple
fix for now.

I expect the benefits from the less synchronized, multiple-in-flight-data
global queue will still outweigh the costs of dynamic allocations. But
if worst comes to worst then we just go back to a globally synchronous
one-at-a-time implementation, but that would be pretty sad!

Signed-off-by: Ingo Molnar <mingo@elte.hu>

diff --git a/kernel/smp.c b/kernel/smp.c
index 96fc7c0..e6084f6 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -260,6 +260,41 @@ void __smp_call_function_single(int cpu, struct call_single_data *data)
generic_exec_single(cpu, data);
}

+/* Dummy function */
+static void quiesce_dummy(void *unused)
+{
+}
+
+/*
+ * Ensure stack based data used in call function mask is safe to free.
+ *
+ * This is needed by smp_call_function_mask when using on-stack data, because
+ * a single call function queue is shared by all CPUs, and any CPU may pick up
+ * the data item on the queue at any time before it is deleted. So we need to
+ * ensure that all CPUs have transitioned through a quiescent state after
+ * this call.
+ *
+ * This is a very slow function, implemented by sending synchronous IPIs to
+ * all possible CPUs. For this reason, we have to alloc data rather than use
+ * stack based data even in the case of synchronous calls. The stack based
+ * data is then just used for deadlock/oom fallback which will be very rare.
+ *
+ * If a faster scheme can be made, we could go back to preferring stack based
+ * data -- the data allocation/free is non-zero cost.
+ */
+static void smp_call_function_mask_quiesce_stack(cpumask_t mask)
+{
+ struct call_single_data data;
+ int cpu;
+
+ data.func = quiesce_dummy;
+ data.info = NULL;
+ data.flags = CSD_FLAG_WAIT;
+
+ for_each_cpu_mask(cpu, mask)
+ generic_exec_single(cpu, &data);
+}
+
/**
* smp_call_function_mask(): Run a function on a set of other CPUs.
* @mask: The set of cpus to run on.
@@ -285,6 +320,7 @@ int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
cpumask_t allbutself;
unsigned long flags;
int cpu, num_cpus;
+ int slowpath = 0;

/* Can deadlock when called with interrupts disabled */
WARN_ON(irqs_disabled());
@@ -306,15 +342,16 @@ int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
return smp_call_function_single(cpu, func, info, wait);
}

- if (!wait) {
- data = kmalloc(sizeof(*data), GFP_ATOMIC);
- if (data)
- data->csd.flags = CSD_FLAG_ALLOC;
- }
- if (!data) {
+ data = kmalloc(sizeof(*data), GFP_ATOMIC);
+ if (data) {
+ data->csd.flags = CSD_FLAG_ALLOC;
+ if (wait)
+ data->csd.flags |= CSD_FLAG_WAIT;
+ } else {
data = &d;
data->csd.flags = CSD_FLAG_WAIT;
wait = 1;
+ slowpath = 1;
}

spin_lock_init(&data->lock);
@@ -331,8 +368,11 @@ int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
arch_send_call_function_ipi(mask);

/* optionally wait for the CPUs to complete */
- if (wait)
+ if (wait) {
csd_flag_wait(&data->csd);
+ if (unlikely(slowpath))
+ smp_call_function_mask_quiesce_stack(allbutself);
+ }

return 0;
}



\
 
 \ /
  Last update: 2008-08-12 09:19    [W:0.112 / U:0.088 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site