lkml.org 
[lkml]   [2007]   [Apr]   [27]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
    Patch in this message
    /
    Date
    From
    Subject[PATCH 1/9] Containers (V9): Basic container framework
    This patch adds the main containers framework - the container
    filesystem, and the basic structures for tracking membership and
    associating subsystem state objects to tasks.

    Signed-off-by: Paul Menage <menage@google.com>

    ---
    Documentation/containers.txt | 524 +++++++++++++++++
    include/linux/container.h | 198 ++++++
    include/linux/container_subsys.h | 10
    include/linux/sched.h | 34 +
    init/Kconfig | 3
    init/main.c | 3
    kernel/Makefile | 1
    kernel/container.c | 1151 +++++++++++++++++++++++++++++++++++++++
    8 files changed, 1923 insertions(+), 1 deletion(-)

    Index: container-2.6.21-rc7-mm1/Documentation/containers.txt
    ===================================================================
    --- /dev/null
    +++ container-2.6.21-rc7-mm1/Documentation/containers.txt
    @@ -0,0 +1,524 @@
    + CONTAINERS
    + -------
    +
    +Written by Paul Menage <menage@google.com> based on Documentation/cpusets.txt
    +
    +Original copyright statements from cpusets.txt:
    +Portions Copyright (C) 2004 BULL SA.
    +Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
    +Modified by Paul Jackson <pj@sgi.com>
    +Modified by Christoph Lameter <clameter@sgi.com>
    +
    +CONTENTS:
    +=========
    +
    +1. Containers
    + 1.1 What are containers ?
    + 1.2 Why are containers needed ?
    + 1.3 How are containers implemented ?
    + 1.4 What does notify_on_release do ?
    + 1.5 How do I use containers ?
    +2. Usage Examples and Syntax
    + 2.1 Basic Usage
    + 2.2 Attaching processes
    +3. Kernel API
    + 3.1 Overview
    + 3.2 Synchronization
    + 3.3 Subsystem API
    +4. Questions
    +
    +1. Containers
    +==========
    +
    +1.1 What are containers ?
    +----------------------
    +
    +Containers provide a mechanism for aggregating/partitioning sets of
    +tasks, and all their future children, into hierarchical groups with
    +specialized behaviour.
    +
    +Definitions:
    +
    +A *container* associates a set of tasks with a set of parameters for one
    +or more subsystems.
    +
    +A *subsystem* is a module that makes use of the task grouping
    +facilities provided by containers to treat groups of tasks in
    +particular ways. A subsystem is typically a "resource controller" that
    +schedules a resource or applies per-container limits, but it may be
    +anything that wants to act on a group of processes, e.g. a
    +virtualization subsystem.
    +
    +A *hierarchy* is a set of containers arranged in a tree, such that
    +every task in the system is in exactly one of the containers in the
    +hierarchy, and a set of subsystems; each subsystem has system-specific
    +state attached to each container in the hierarchy. Each hierarchy has
    +an instance of the container virtual filesystem associated with it.
    +
    +At any one time there may be multiple active hierachies of task
    +containers. Each hierarchy is a partition of all tasks in the system.
    +
    +User level code may create and destroy containers by name in an
    +instance of the container virtual file system, specify and query to
    +which container a task is assigned, and list the task pids assigned to
    +a container. Those creations and assignments only affect the hierarchy
    +associated with that instance of the container file system.
    +
    +On their own, the only use for containers is for simple job
    +tracking. The intention is that other subsystems hook into the generic
    +container support to provide new attributes for containers, such as
    +accounting/limiting the resources which processes in a container can
    +access. For example, cpusets (see Documentation/cpusets.txt) allows
    +you to associate a set of CPUs and a set of memory nodes with the
    +tasks in each container.
    +
    +1.2 Why are containers needed ?
    +----------------------------
    +
    +There are multiple efforts to provide process aggregations in the
    +Linux kernel, mainly for resource tracking purposes. Such efforts
    +include cpusets, CKRM/ResGroups, UserBeanCounters, and virtual server
    +namespaces. These all require the basic notion of a
    +grouping/partitioning of processes, with newly forked processes ending
    +in the same group (container) as their parent process.
    +
    +The kernel container patch provides the minimum essential kernel
    +mechanisms required to efficiently implement such groups. It has
    +minimal impact on the system fast paths, and provides hooks for
    +specific subsystems such as cpusets to provide additional behaviour as
    +desired.
    +
    +Multiple hierarchy support is provided to allow for situations where
    +the division of tasks into containers is distinctly different for
    +different subsystems - having parallel hierarchies allows each
    +hierarchy to be a natural division of tasks, without having to handle
    +complex combinations of tasks that would be present if several
    +unrelated subsystems needed to be forced into the same tree of
    +containers.
    +
    +At one extreme, each resource controller or subsystem could be in a
    +separate hierarchy; at the other extreme, all subsystems
    +would be attached to the same hierarchy.
    +
    +As an example of a scenario (originally proposed by vatsa@in.ibm.com)
    +that can benefit from multiple hierarchies, consider a large
    +university server with various users - students, professors, system
    +tasks etc. The resource planning for this server could be along the
    +following lines:
    +
    + CPU : Top cpuset
    + / \
    + CPUSet1 CPUSet2
    + | |
    + (Profs) (Students)
    +
    + In addition (system tasks) are attached to topcpuset (so
    + that they can run anywhere) with a limit of 20%
    +
    + Memory : Professors (50%), students (30%), system (20%)
    +
    + Disk : Prof (50%), students (30%), system (20%)
    +
    + Network : WWW browsing (20%), Network File System (60%), others (20%)
    + / \
    + Prof (15%) students (5%)
    +
    +Browsers like firefox/lynx go into the WWW network class, while (k)nfsd go
    +into NFS network class.
    +
    +At the same time firefox/lynx will share an appropriate CPU/Memory class
    +depending on who launched it (prof/student).
    +
    +With the ability to classify tasks differently for different resources
    +(by putting those resource subsystems in different hierarchies) then
    +the admin can easily set up a script which receives exec notifications
    +and depending on who is launching the browser he can
    +
    + # echo browser_pid > /mnt/<restype>/<userclass>/tasks
    +
    +With only a single hierarchy, he now would potentially have to create
    +a separate container for every browser launched and associate it with
    +approp network and other resource class. This may lead to
    +proliferation of such containers.
    +
    +Also lets say that the administrator would like to give enhanced network
    +access temporarily to a student's browser (since it is night and the user
    +wants to do online gaming :) OR give one of the students simulation
    +apps enhanced CPU power,
    +
    +With ability to write pids directly to resource classes, its just a
    +matter of :
    +
    + # echo pid > /mnt/network/<new_class>/tasks
    + (after some time)
    + # echo pid > /mnt/network/<orig_class>/tasks
    +
    +Without this ability, he would have to split the container into
    +multiple separate ones and then associate the new containers with the
    +new resource classes.
    +
    +
    +
    +1.3 How are containers implemented ?
    +---------------------------------
    +
    +Containers extends the kernel as follows:
    +
    + - Each task in the system has a reference-counted pointer to a
    + css_group.
    +
    + - A css_group contains a set of reference-counted pointers to
    + container_subsys_state objects, one for each container subsystem
    + registered in the system. There is no direct link from a task to
    + the container of which it's a member in each hierarchy, but this
    + can be determined by following pointers through the
    + container_subsys_state objects. This is because accessing the
    + subsystem state is something that's expected to happen frequently
    + and in performance-critical code, whereas operations that require a
    + task's actual container assignments (in particular, moving between
    + containers) are less common.
    +
    + - A container hierarchy filesystem can be mounted for browsing and
    + manipulation from user space.
    +
    + - You can list all the tasks (by pid) attached to any container.
    +
    +The implementation of containers requires a few, simple hooks
    +into the rest of the kernel, none in performance critical paths:
    +
    + - in init/main.c, to initialize the root containers and initial
    + css_group at system boot.
    +
    + - in fork and exit, to attach and detach a task from its css_group.
    +
    +In addition a new file system, of type "container" may be mounted, to
    +enable browsing and modifying the containers presently known to the
    +kernel. When mounting a container hierarchy, you may specify a
    +comma-separated list of subsystems to mount as the filesystem mount
    +options. By default, mounting the container filesystem attempts to
    +mount a hierarchy containing all registered subsystems.
    +
    +If an active hierarchy with exactly the same set of subsystems already
    +exists, it will be reused for the new mount. If no existing hierarchy
    +matches, and any of the requested subsystems are in use in an existing
    +hierarchy, the mount will fail with -EBUSY. Otherwise, a new hierarchy
    +is activated, associated with the requested subsystems.
    +
    +It's not currently possible to bind a new subsystem to an active
    +container hierarchy, or to unbind a subsystem from an active container
    +hierarchy. This may be possible in future, but is fraught with nasty
    +error-recovery issues.
    +
    +When a container filesystem is unmounted, if there are any
    +subcontainers created below the top-level container, that hierarchy
    +will remain active even though unmounted; if there are no
    +subcontainers then the hierarchy will be deactivated.
    +
    +No new system calls are added for containers - all support for
    +querying and modifying containers is via this container file system.
    +
    +Each task under /proc has an added file named 'container' displaying,
    +for each active hierarchy, the subsystem names and the container name
    +as the path relative to the root of the container file system.
    +
    +Each container is represented by a directory in the container file system
    +containing the following files describing that container:
    +
    + - tasks: list of tasks (by pid) attached to that container
    + - notify_on_release flag: run /sbin/container_release_agent on exit?
    +
    +Other subsystems such as cpusets may add additional files in each
    +container dir
    +
    +New containers are created using the mkdir system call or shell
    +command. The properties of a container, such as its flags, are
    +modified by writing to the appropriate file in that containers
    +directory, as listed above.
    +
    +The named hierarchical structure of nested containers allows partitioning
    +a large system into nested, dynamically changeable, "soft-partitions".
    +
    +The attachment of each task, automatically inherited at fork by any
    +children of that task, to a container allows organizing the work load
    +on a system into related sets of tasks. A task may be re-attached to
    +any other container, if allowed by the permissions on the necessary
    +container file system directories.
    +
    +When a task is moved from one container to another, it gets a new
    +css_group pointer - if there's an already existing css_group with the
    +desired collection of containers then that group is reused, else a new
    +css_group is allocated. Note that the current implementation uses a
    +linear search to locate an appropriate existing css_group, so isn't
    +very efficient. A future version will use a hash table for better
    +performance.
    +
    +The use of a Linux virtual file system (vfs) to represent the
    +container hierarchy provides for a familiar permission and name space
    +for containers, with a minimum of additional kernel code.
    +
    +1.4 What does notify_on_release do ?
    +------------------------------------
    +
    +*** notify_on_release is disabled in the current patch set. It may be
    +*** reactivated in a future patch in a less-intrusive manner
    +
    +If the notify_on_release flag is enabled (1) in a container, then
    +whenever the last task in the container leaves (exits or attaches to
    +some other container) and the last child container of that container
    +is removed, then the kernel runs the command specified by the contents
    +of the "release_agent" file in that hierarchy's root directory,
    +supplying the pathname (relative to the mount point of the container
    +file system) of the abandoned container. This enables automatic
    +removal of abandoned containers. The default value of
    +notify_on_release in the root container at system boot is disabled
    +(0). The default value of other containers at creation is the current
    +value of their parents notify_on_release setting. The default value of
    +a container hierarchy's release_agent path is empty.
    +
    +1.5 How do I use containers ?
    +--------------------------
    +
    +To start a new job that is to be contained within a container, using
    +the "cpuset" container subsystem, the steps are something like:
    +
    + 1) mkdir /dev/container
    + 2) mount -t container -ocpuset cpuset /dev/container
    + 3) Create the new container by doing mkdir's and write's (or echo's) in
    + the /dev/container virtual file system.
    + 4) Start a task that will be the "founding father" of the new job.
    + 5) Attach that task to the new container by writing its pid to the
    + /dev/container tasks file for that container.
    + 6) fork, exec or clone the job tasks from this founding father task.
    +
    +For example, the following sequence of commands will setup a container
    +named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
    +and then start a subshell 'sh' in that container:
    +
    + mount -t container cpuset -ocpuset /dev/container
    + cd /dev/container
    + mkdir Charlie
    + cd Charlie
    + /bin/echo $$ > tasks
    + sh
    + # The subshell 'sh' is now running in container Charlie
    + # The next line should display '/Charlie'
    + cat /proc/self/container
    +
    +2. Usage Examples and Syntax
    +============================
    +
    +2.1 Basic Usage
    +---------------
    +
    +Creating, modifying, using the containers can be done through the container
    +virtual filesystem.
    +
    +To mount a container hierarchy will all available subsystems, type:
    +# mount -t container xxx /dev/container
    +
    +The "xxx" is not interpreted by the container code, but will appear in
    +/proc/mounts so may be any useful identifying string that you like.
    +
    +To mount a container hierarchy with just the cpuset and numtasks
    +subsystems, type:
    +# mount -t container -o cpuset,numtasks hier1 /dev/container
    +
    +To change the set of subsystems bound to a mounted hierarchy, just
    +remount with different options:
    +
    +# mount -o remount,cpuset,ns /dev/container
    +
    +Note that changing the set of subsystems is currently only supported
    +when the hierarchy consists of a single (root) container. Supporting
    +the ability to arbitrarily bind/unbind subsystems from an existing
    +container hierarchy is intended to be implemented in the future.
    +
    +Then under /dev/container you can find a tree that corresponds to the
    +tree of the containers in the system. For instance, /dev/container
    +is the container that holds the whole system.
    +
    +If you want to create a new container under /dev/container:
    +# cd /dev/container
    +# mkdir my_container
    +
    +Now you want to do something with this container.
    +# cd my_container
    +
    +In this directory you can find several files:
    +# ls
    +notify_on_release release_agent tasks
    +(plus whatever files are added by the attached subsystems)
    +
    +Now attach your shell to this container:
    +# /bin/echo $$ > tasks
    +
    +You can also create containers inside your container by using mkdir in this
    +directory.
    +# mkdir my_sub_cs
    +
    +To remove a container, just use rmdir:
    +# rmdir my_sub_cs
    +
    +This will fail if the container is in use (has containers inside, or
    +has processes attached, or is held alive by other subsystem-specific
    +reference).
    +
    +2.2 Attaching processes
    +-----------------------
    +
    +# /bin/echo PID > tasks
    +
    +Note that it is PID, not PIDs. You can only attach ONE task at a time.
    +If you have several tasks to attach, you have to do it one after another:
    +
    +# /bin/echo PID1 > tasks
    +# /bin/echo PID2 > tasks
    + ...
    +# /bin/echo PIDn > tasks
    +
    +3. Kernel API
    +=============
    +
    +3.1 Overview
    +------------
    +
    +Each kernel subsystem that wants to hook into the generic container
    +system needs to create a container_subsys object. This contains
    +various methods, which are callbacks from the container system, along
    +with a subsystem id which will be assigned by the container system.
    +
    +Other fields in the container_subsys object include:
    +
    +- subsys_id: a unique array index for the subsystem, indicating which
    + entry in container->subsys[] this subsystem should be
    + managing. Initialized by container_register_subsys(); prior to this
    + it should be initialized to -1
    +
    +- hierarchy: an index indicating which hierarchy, if any, this
    + subsystem is currently attached to. If this is -1, then the
    + subsystem is not attached to any hierarchy, and all tasks should be
    + considered to be members of the subsystem's top_container. It should
    + be initialized to -1.
    +
    +- name: should be initialized to a unique subsystem name prior to
    + calling container_register_subsystem. Should be no longer than
    + MAX_CONTAINER_TYPE_NAMELEN
    +
    +Each container object created by the system has an array of pointers,
    +indexed by subsystem id; this pointer is entirely managed by the
    +subsystem; the generic container code will never touch this pointer.
    +
    +3.2 Synchronization
    +-------------------
    +
    +There is a global mutex, container_mutex, used by the container
    +system. This should be taken by anything that wants to modify a
    +container. It may also be taken to prevent containers from being
    +modified, but more specific locks may be more appropriate in that
    +situation.
    +
    +See kernel/container.c for more details.
    +
    +Subsystems can take/release the container_mutex via the functions
    +container_lock()/container_unlock(), and can
    +take/release the callback_mutex via the functions
    +container_lock()/container_unlock().
    +
    +Accessing a task's container pointer may be done in the following ways:
    +- while holding container_mutex
    +- while holding the task's alloc_lock (via task_lock())
    +- inside an rcu_read_lock() section via rcu_dereference()
    +
    +3.3 Subsystem API
    +--------------------------
    +
    +Each subsystem should:
    +
    +- add an entry in linux/container_subsys.h
    +- define a container_subsys object called <name>_subsys
    +
    +Each subsystem may export the following methods. The only mandatory
    +methods are create/destroy. Any others that are null are presumed to
    +be successful no-ops.
    +
    +int create(struct container *cont)
    +LL=container_mutex
    +
    +Called to create a subsystem state object for a container. The
    +subsystem should set its subsystem pointer for the passed container,
    +returning 0 on success or a negative error code. On success, the
    +subsystem pointer should point to a structure of type
    +container_subsys_state (typically embedded in a larger
    +subsystem-specific object), which will be initialized by the container
    +system. Note that this will be called at initialization to create the
    +root subsystem state for this subsystem; this case can be identified
    +by the passed container object having a NULL parent (since it's the
    +root of the hierarchy) and may be an appropriate place for
    +initialization code.
    +
    +void destroy(struct container *cont)
    +LL=container_mutex
    +
    +The container system is about to destroy the passed container; the
    +subsystem should do any necessary cleanup
    +
    +int can_attach(struct container_subsys *ss, struct container *cont,
    + struct task_struct *task)
    +LL=container_mutex
    +
    +Called prior to moving a task into a container; if the subsystem
    +returns an error, this will abort the attach operation. If a NULL
    +task is passed, then a successful result indicates that *any*
    +unspecified task can be moved into the container. Note that this isn't
    +called on a fork. If this method returns 0 (success) then this should
    +remain valid while the caller holds container_mutex.
    +
    +void attach(struct container_subsys *ss, struct container *cont,
    + struct container *old_cont, struct task_struct *task)
    +LL=container_mutex
    +
    +
    +Called after the task has been attached to the container, to allow any
    +post-attachment activity that requires memory allocations or blocking.
    +
    +void fork(struct container_subsy *ss, struct task_struct *task)
    +LL=callback_mutex, maybe read_lock(tasklist_lock)
    +
    +Called when a task is forked into a container. Also called during
    +registration for all existing tasks.
    +
    +void exit(struct container_subsys *ss, struct task_struct *task)
    +LL=callback_mutex
    +
    +Called during task exit
    +
    +int populate(struct container_subsys *ss, struct container *cont)
    +LL=none
    +
    +Called after creation of a container to allow a subsystem to populate
    +the container directory with file entries. The subsystem should make
    +calls to container_add_file() with objects of type cftype (see
    +include/linux/container.h for details). Note that although this
    +method can return an error code, the error code is currently not
    +always handled well.
    +
    +void bind(struct container_subsys *ss, struct container *root)
    +LL=callback_mutex
    +
    +Called when a container subsystem is rebound to a different hierarchy
    +and root container. Currently this will only involve movement between
    +the default hierarchy (which never has sub-containers) and a hierarchy
    +that is being created/destroyed (and hence has no sub-containers).
    +
    +4. Questions
    +============
    +
    +Q: what's up with this '/bin/echo' ?
    +A: bash's builtin 'echo' command does not check calls to write() against
    + errors. If you use it in the container file system, you won't be
    + able to tell whether a command succeeded or failed.
    +
    +Q: When I attach processes, only the first of the line gets really attached !
    +A: We can only return one error code per call to write(). So you should also
    + put only ONE pid.
    +
    Index: container-2.6.21-rc7-mm1/include/linux/container.h
    ===================================================================
    --- /dev/null
    +++ container-2.6.21-rc7-mm1/include/linux/container.h
    @@ -0,0 +1,198 @@
    +#ifndef _LINUX_CONTAINER_H
    +#define _LINUX_CONTAINER_H
    +/*
    + * container interface
    + *
    + * Copyright (C) 2003 BULL SA
    + * Copyright (C) 2004-2006 Silicon Graphics, Inc.
    + *
    + */
    +
    +#include <linux/sched.h>
    +#include <linux/kref.h>
    +#include <linux/cpumask.h>
    +#include <linux/nodemask.h>
    +
    +#ifdef CONFIG_CONTAINERS
    +
    +extern int container_init_early(void);
    +extern int container_init(void);
    +extern void container_init_smp(void);
    +
    +extern struct file_operations proc_container_operations;
    +
    +extern void container_lock(void);
    +extern void container_unlock(void);
    +
    +struct containerfs_root;
    +
    +/* Per-subsystem/per-container state maintained by the system. */
    +struct container_subsys_state {
    + /* The container that this subsystem is attached to. Useful
    + * for subsystems that want to know about the container
    + * hierarchy structure */
    + struct container *container;
    +
    + /* State maintained by the container system to allow
    + * subsystems to be "busy". Should be accessed via css_get()
    + * and css_put() */
    +
    + atomic_t refcnt;
    +};
    +
    +/*
    + * Call css_get() to hold a reference on the container;
    + *
    + */
    +
    +static inline void css_get(struct container_subsys_state *css)
    +{
    + atomic_inc(&css->refcnt);
    +}
    +/*
    + * css_put() should be called to release a reference taken by
    + * css_get()
    + */
    +
    +static inline void css_put(struct container_subsys_state *css)
    +{
    + atomic_dec(&css->refcnt);
    +}
    +
    +struct container {
    + unsigned long flags; /* "unsigned long" so bitops work */
    +
    + /* count users of this container. >0 means busy, but doesn't
    + * necessarily indicate the number of tasks in the
    + * container */
    + atomic_t count;
    +
    + /*
    + * We link our 'sibling' struct into our parent's 'children'.
    + * Our children link their 'sibling' into our 'children'.
    + */
    + struct list_head sibling; /* my parent's children */
    + struct list_head children; /* my children */
    +
    + struct container *parent; /* my parent */
    + struct dentry *dentry; /* container fs entry */
    +
    + /* Private pointers for each registered subsystem */
    + struct container_subsys_state *subsys[CONTAINER_SUBSYS_COUNT];
    +
    + struct containerfs_root *root;
    + struct container *top_container;
    +};
    +
    +/* struct cftype:
    + *
    + * The files in the container filesystem mostly have a very simple read/write
    + * handling, some common function will take care of it. Nevertheless some cases
    + * (read tasks) are special and therefore I define this structure for every
    + * kind of file.
    + *
    + *
    + * When reading/writing to a file:
    + * - the container to use in file->f_dentry->d_parent->d_fsdata
    + * - the 'cftype' of the file is file->f_dentry->d_fsdata
    + */
    +
    +struct inode;
    +#define MAX_CFTYPE_NAME 64
    +struct cftype {
    + /* By convention, the name should begin with the name of the
    + * subsystem, followed by a period */
    + char name[MAX_CFTYPE_NAME];
    + int private;
    + int (*open) (struct inode *inode, struct file *file);
    + ssize_t (*read) (struct container *cont, struct cftype *cft,
    + struct file *file,
    + char __user *buf, size_t nbytes, loff_t *ppos);
    + u64 (*read_uint) (struct container *cont, struct cftype *cft);
    + ssize_t (*write) (struct container *cont, struct cftype *cft,
    + struct file *file,
    + const char __user *buf, size_t nbytes, loff_t *ppos);
    + int (*release) (struct inode *inode, struct file *file);
    +};
    +
    +/* Add a new file to the given container directory. Should only be
    + * called by subsystems from within a populate() method */
    +int container_add_file(struct container *cont, const struct cftype *cft);
    +
    +/* Add a set of new files to the given container directory. Should
    + * only be called by subsystems from within a populate() method */
    +int container_add_files(struct container *cont, const struct cftype cft[],
    + int count);
    +
    +int container_is_removed(const struct container *cont);
    +
    +int container_path(const struct container *cont, char *buf, int buflen);
    +
    +/* Return true if the container is a descendant of the current container */
    +int container_is_descendant(const struct container *cont);
    +
    +/* Container subsystem type. See Documentation/containers.txt for details */
    +
    +struct container_subsys {
    + int (*create)(struct container_subsys *ss,
    + struct container *cont);
    + void (*destroy)(struct container_subsys *ss, struct container *cont);
    + int (*can_attach)(struct container_subsys *ss,
    + struct container *cont, struct task_struct *tsk);
    + void (*attach)(struct container_subsys *ss, struct container *cont,
    + struct container *old_cont, struct task_struct *tsk);
    + void (*fork)(struct container_subsys *ss, struct task_struct *task);
    + void (*exit)(struct container_subsys *ss, struct task_struct *task);
    + int (*populate)(struct container_subsys *ss,
    + struct container *cont);
    + void (*bind)(struct container_subsys *ss, struct container *root);
    + int subsys_id;
    + int active;
    + int early_init;
    +#define MAX_CONTAINER_TYPE_NAMELEN 32
    + const char *name;
    +
    + /* Protected by RCU */
    + struct containerfs_root *root;
    +
    + struct list_head sibling;
    +
    + void *private;
    +};
    +
    +#define SUBSYS(_x) extern struct container_subsys _x ## _subsys;
    +#include <linux/container_subsys.h>
    +#undef SUBSYS
    +
    +static inline struct container_subsys_state *container_subsys_state(
    + struct container *cont, int subsys_id)
    +{
    + return cont->subsys[subsys_id];
    +}
    +
    +static inline struct container_subsys_state *task_subsys_state(
    + struct task_struct *task, int subsys_id)
    +{
    + return rcu_dereference(task->containers.subsys[subsys_id]);
    +}
    +
    +static inline struct container* task_container(struct task_struct *task,
    + int subsys_id)
    +{
    + return task_subsys_state(task, subsys_id)->container;
    +}
    +
    +int container_path(const struct container *cont, char *buf, int buflen);
    +
    +#else /* !CONFIG_CONTAINERS */
    +
    +static inline int container_init_early(void) { return 0; }
    +static inline int container_init(void) { return 0; }
    +static inline void container_init_smp(void) {}
    +
    +static inline void container_lock(void) {}
    +static inline void container_unlock(void) {}
    +
    +#endif /* !CONFIG_CONTAINERS */
    +
    +#endif /* _LINUX_CONTAINER_H */
    Index: container-2.6.21-rc7-mm1/include/linux/container_subsys.h
    ===================================================================
    --- /dev/null
    +++ container-2.6.21-rc7-mm1/include/linux/container_subsys.h
    @@ -0,0 +1,10 @@
    +/* Add subsystem definitions of the form SUBSYS(<name>) in this
    + * file. Surround each one by a line of comment markers so that
    + * patches don't collide
    + */
    +
    +/* */
    +
    +/* */
    +
    +/* */
    Index: container-2.6.21-rc7-mm1/include/linux/sched.h
    ===================================================================
    --- container-2.6.21-rc7-mm1.orig/include/linux/sched.h
    +++ container-2.6.21-rc7-mm1/include/linux/sched.h
    @@ -820,6 +820,34 @@ struct uts_namespace;

    struct prio_array;

    +#ifdef CONFIG_CONTAINERS
    +
    +#define SUBSYS(_x) _x ## _subsys_id,
    +enum container_subsys_id {
    +#include <linux/container_subsys.h>
    + CONTAINER_SUBSYS_COUNT
    +};
    +#undef SUBSYS
    +
    +/* A css_group is a structure holding pointers to a set of
    + * container_subsys_state objects.
    + */
    +
    +struct css_group {
    +
    + /* Set of subsystem states, one for each subsystem. NULL for
    + * subsystems that aren't part of this hierarchy. These
    + * pointers reduce the number of dereferences required to get
    + * from a task to its state for a given container, but result
    + * in increased space usage if tasks are in wildly different
    + * groupings across different hierarchies. This array is
    + * immutable after creation */
    + struct container_subsys_state *subsys[CONTAINER_SUBSYS_COUNT];
    +
    +};
    +
    +#endif /* CONFIG_CONTAINERS */
    +
    struct task_struct {
    volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
    struct thread_info *thread_info;
    @@ -1072,6 +1100,9 @@ struct task_struct {
    int cpuset_mems_generation;
    int cpuset_mem_spread_rotor;
    #endif
    +#ifdef CONFIG_CONTAINERS
    + struct css_group containers;
    +#endif
    struct robust_list_head __user *robust_list;
    #ifdef CONFIG_COMPAT
    struct compat_robust_list_head __user *compat_robust_list;
    @@ -1509,7 +1540,8 @@ static inline int thread_group_empty(str
    /*
    * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
    * subscriptions and synchronises with wait4(). Also used in procfs. Also
    - * pins the final release of task.io_context. Also protects ->cpuset.
    + * pins the final release of task.io_context. Also protects ->cpuset and
    + * ->container.subsys[].
    *
    * Nests both inside and outside of read_lock(&tasklist_lock).
    * It must not be nested with write_lock_irq(&tasklist_lock),
    Index: container-2.6.21-rc7-mm1/init/Kconfig
    ===================================================================
    --- container-2.6.21-rc7-mm1.orig/init/Kconfig
    +++ container-2.6.21-rc7-mm1/init/Kconfig
    @@ -288,6 +288,9 @@ config IKCONFIG_PROC
    This option enables access to the kernel configuration file
    through /proc/config.gz.

    +config CONTAINERS
    + bool
    +
    config CPUSETS
    bool "Cpuset support"
    depends on SMP
    Index: container-2.6.21-rc7-mm1/init/main.c
    ===================================================================
    --- container-2.6.21-rc7-mm1.orig/init/main.c
    +++ container-2.6.21-rc7-mm1/init/main.c
    @@ -39,6 +39,7 @@
    #include <linux/writeback.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    +#include <linux/container.h>
    #include <linux/efi.h>
    #include <linux/tick.h>
    #include <linux/interrupt.h>
    @@ -499,6 +500,7 @@ asmlinkage void __init start_kernel(void
    char * command_line;
    extern struct kernel_param __start___param[], __stop___param[];

    + container_init_early();
    smp_setup_processor_id();

    /*
    @@ -624,6 +626,7 @@ asmlinkage void __init start_kernel(void
    #ifdef CONFIG_PROC_FS
    proc_root_init();
    #endif
    + container_init();
    cpuset_init();
    taskstats_init_early();
    delayacct_init();
    Index: container-2.6.21-rc7-mm1/kernel/Makefile
    ===================================================================
    --- container-2.6.21-rc7-mm1.orig/kernel/Makefile
    +++ container-2.6.21-rc7-mm1/kernel/Makefile
    @@ -36,6 +36,7 @@ obj-$(CONFIG_PM) += power/
    obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o
    obj-$(CONFIG_KEXEC) += kexec.o
    obj-$(CONFIG_COMPAT) += compat.o
    +obj-$(CONFIG_CONTAINERS) += container.o
    obj-$(CONFIG_CPUSETS) += cpuset.o
    obj-$(CONFIG_IKCONFIG) += configs.o
    obj-$(CONFIG_STOP_MACHINE) += stop_machine.o
    Index: container-2.6.21-rc7-mm1/kernel/container.c
    ===================================================================
    --- /dev/null
    +++ container-2.6.21-rc7-mm1/kernel/container.c
    @@ -0,0 +1,1151 @@
    +/*
    + * kernel/container.c
    + *
    + * Generic process-grouping system.
    + *
    + * Based originally on the cpuset system, extracted by Paul Menage
    + * Copyright (C) 2006 Google, Inc
    + *
    + * Copyright notices from the original cpuset code:
    + * --------------------------------------------------
    + * Copyright (C) 2003 BULL SA.
    + * Copyright (C) 2004-2006 Silicon Graphics, Inc.
    + *
    + * Portions derived from Patrick Mochel's sysfs code.
    + * sysfs is Copyright (c) 2001-3 Patrick Mochel
    + *
    + * 2003-10-10 Written by Simon Derr.
    + * 2003-10-22 Updates by Stephen Hemminger.
    + * 2004 May-July Rework by Paul Jackson.
    + * ---------------------------------------------------
    + *
    + * This file is subject to the terms and conditions of the GNU General Public
    + * License. See the file COPYING in the main directory of the Linux
    + * distribution for more details.
    + */
    +
    +#include <linux/cpu.h>
    +#include <linux/cpumask.h>
    +#include <linux/container.h>
    +#include <linux/err.h>
    +#include <linux/errno.h>
    +#include <linux/file.h>
    +#include <linux/fs.h>
    +#include <linux/init.h>
    +#include <linux/interrupt.h>
    +#include <linux/kernel.h>
    +#include <linux/kmod.h>
    +#include <linux/list.h>
    +#include <linux/mempolicy.h>
    +#include <linux/mm.h>
    +#include <linux/module.h>
    +#include <linux/mount.h>
    +#include <linux/namei.h>
    +#include <linux/pagemap.h>
    +#include <linux/proc_fs.h>
    +#include <linux/rcupdate.h>
    +#include <linux/sched.h>
    +#include <linux/seq_file.h>
    +#include <linux/security.h>
    +#include <linux/slab.h>
    +#include <linux/smp_lock.h>
    +#include <linux/spinlock.h>
    +#include <linux/stat.h>
    +#include <linux/string.h>
    +#include <linux/time.h>
    +#include <linux/backing-dev.h>
    +#include <linux/sort.h>
    +
    +#include <asm/uaccess.h>
    +#include <asm/atomic.h>
    +#include <linux/mutex.h>
    +
    +#define CONTAINER_SUPER_MAGIC 0x27e0eb
    +
    +/* Generate an array of container subsystem pointers */
    +#define SUBSYS(_x) &_x ## _subsys,
    +
    +static struct container_subsys *subsys[] = {
    +#include <linux/container_subsys.h>
    +};
    +
    +/* A containerfs_root represents the root of a container hierarchy,
    + * and may be associated with a superblock to form an active
    + * hierarchy */
    +struct containerfs_root {
    + struct super_block *sb;
    +
    + /* The bitmask of subsystems attached to this hierarchy */
    + unsigned long subsys_bits;
    +
    + /* A list running through the attached subsystems */
    + struct list_head subsys_list;
    +
    + /* The root container for this hierarchy */
    + struct container top_container;
    +
    + /* Tracks how many containers are currently defined in hierarchy.*/
    + int number_of_containers;
    +
    + /* A list running through the mounted hierarchies */
    + struct list_head root_list;
    +};
    +
    +
    +/* The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
    + * subsystems that are otherwise unattached - it never has more than a
    + * single container, and all tasks are part of that container. */
    +
    +static struct containerfs_root rootnode;
    +
    +/* The list of hierarchy roots */
    +
    +static LIST_HEAD(roots);
    +
    +/* dummytop is a shorthand for the dummy hierarchy's top container */
    +#define dummytop (&rootnode.top_container)
    +
    +/* This flag indicates whether tasks in the fork and exit paths should
    + * take callback_mutex and check for fork/exit handlers to call. This
    + * avoids us having to do extra work in the fork/exit path if none of the
    + * subsystems need to be called.
    + */
    +static int need_forkexit_callback = 0;
    +
    +/* bits in struct container flags field */
    +typedef enum {
    + CONT_REMOVED,
    +} container_flagbits_t;
    +
    +/* convenient tests for these bits */
    +inline int container_is_removed(const struct container *cont)
    +{
    + return test_bit(CONT_REMOVED, &cont->flags);
    +}
    +
    +/* for_each_subsys() allows you to iterate on each subsystem attached to
    + * an active hierarchy */
    +#define for_each_subsys(_root, _ss) \
    +list_for_each_entry(_ss, &_root->subsys_list, sibling)
    +
    +/* for_each_root() allows you to iterate across the active hierarchies */
    +#define for_each_root(_root) \
    +list_for_each_entry(_root, &roots, root_list)
    +
    +/*
    + * There is one global container mutex. We also require taking
    + * task_lock() when dereferencing a task's container subsys pointers.
    + * See "The task_lock() exception", at the end of this comment.
    + *
    + * A task must hold container_mutex to modify containers.
    + *
    + * Any task can increment and decrement the count field without lock.
    + * So in general, code holding container_mutex can't rely on the count
    + * field not changing. However, if the count goes to zero, then only
    + * attach_task() can increment it again. Because a count of zero
    + * means that no tasks are currently attached, therefore there is no
    + * way a task attached to that container can fork (the other way to
    + * increment the count). So code holding container_mutex can safely
    + * assume that if the count is zero, it will stay zero. Similarly, if
    + * a task holds container_mutex on a container with zero count, it
    + * knows that the container won't be removed, as container_rmdir()
    + * needs that mutex.
    + *
    + * The container_common_file_write handler for operations that modify
    + * the container hierarchy holds container_mutex across the entire operation,
    + * single threading all such container modifications across the system.
    + *
    + * The fork and exit callbacks container_fork() and container_exit(), don't
    + * (usually) take container_mutex. These are the two most performance
    + * critical pieces of code here. The exception occurs on container_exit(),
    + * when a task in a notify_on_release container exits. Then container_mutex
    + * is taken, and if the container count is zero, a usermode call made
    + * to /sbin/container_release_agent with the name of the container (path
    + * relative to the root of container file system) as the argument.
    + *
    + * A container can only be deleted if both its 'count' of using tasks
    + * is zero, and its list of 'children' containers is empty. Since all
    + * tasks in the system use _some_ container, and since there is always at
    + * least one task in the system (init, pid == 1), therefore, top_container
    + * always has either children containers and/or using tasks. So we don't
    + * need a special hack to ensure that top_container cannot be deleted.
    + *
    + * The task_lock() exception
    + *
    + * The need for this exception arises from the action of
    + * attach_task(), which overwrites one tasks container pointer with
    + * another. It does so using container_mutexe, however there are
    + * several performance critical places that need to reference
    + * task->container without the expense of grabbing a system global
    + * mutex. Therefore except as noted below, when dereferencing or, as
    + * in attach_task(), modifying a task'ss container pointer we use
    + * task_lock(), which acts on a spinlock (task->alloc_lock) already in
    + * the task_struct routinely used for such matters.
    + *
    + * P.S. One more locking exception. RCU is used to guard the
    + * update of a tasks container pointer by attach_task()
    + */
    +
    +static DEFINE_MUTEX(container_mutex);
    +
    +/**
    + * container_lock - lock out any changes to container structures
    + *
    + */
    +
    +void container_lock(void)
    +{
    + mutex_lock(&container_mutex);
    +}
    +
    +/**
    + * container_unlock - release lock on container changes
    + *
    + * Undo the lock taken in a previous container_lock() call.
    + */
    +
    +void container_unlock(void)
    +{
    + mutex_unlock(&container_mutex);
    +}
    +
    +/*
    + * A couple of forward declarations required, due to cyclic reference loop:
    + * container_mkdir -> container_create -> container_populate_dir -> container_add_file
    + * -> container_create_file -> container_dir_inode_operations -> container_mkdir.
    + */
    +
    +static int container_mkdir(struct inode *dir, struct dentry *dentry, int mode);
    +static int container_rmdir(struct inode *unused_dir, struct dentry *dentry);
    +static int container_populate_dir(struct container *cont);
    +static struct inode_operations container_dir_inode_operations;
    +
    +static struct backing_dev_info container_backing_dev_info = {
    + .ra_pages = 0, /* No readahead */
    + .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
    +};
    +
    +static struct inode *container_new_inode(mode_t mode, struct super_block *sb)
    +{
    + struct inode *inode = new_inode(sb);
    +
    + if (inode) {
    + inode->i_mode = mode;
    + inode->i_uid = current->fsuid;
    + inode->i_gid = current->fsgid;
    + inode->i_blocks = 0;
    + inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
    + inode->i_mapping->backing_dev_info = &container_backing_dev_info;
    + }
    + return inode;
    +}
    +
    +static void container_diput(struct dentry *dentry, struct inode *inode)
    +{
    + /* is dentry a directory ? if so, kfree() associated container */
    + if (S_ISDIR(inode->i_mode)) {
    + struct container *cont = dentry->d_fsdata;
    + BUG_ON(!(container_is_removed(cont)));
    + kfree(cont);
    + }
    + iput(inode);
    +}
    +
    +static struct dentry_operations container_dops = {
    + .d_iput = container_diput,
    +};
    +
    +static struct dentry *container_get_dentry(struct dentry *parent,
    + const char *name)
    +{
    + struct dentry *d = lookup_one_len(name, parent, strlen(name));
    + if (!IS_ERR(d))
    + d->d_op = &container_dops;
    + return d;
    +}
    +
    +static void remove_dir(struct dentry *d)
    +{
    + struct dentry *parent = dget(d->d_parent);
    +
    + d_delete(d);
    + simple_rmdir(parent->d_inode, d);
    + dput(parent);
    +}
    +
    +static void container_clear_directory(struct dentry *dentry)
    +{
    + struct list_head *node;
    + BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
    + spin_lock(&dcache_lock);
    + node = dentry->d_subdirs.next;
    + while (node != &dentry->d_subdirs) {
    + struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
    + list_del_init(node);
    + if (d->d_inode) {
    + /* This should never be called on a container
    + * directory with child containers */
    + BUG_ON(d->d_inode->i_mode & S_IFDIR);
    + d = dget_locked(d);
    + spin_unlock(&dcache_lock);
    + d_delete(d);
    + simple_unlink(dentry->d_inode, d);
    + dput(d);
    + spin_lock(&dcache_lock);
    + }
    + node = dentry->d_subdirs.next;
    + }
    + spin_unlock(&dcache_lock);
    +}
    +
    +/*
    + * NOTE : the dentry must have been dget()'ed
    + */
    +static void container_d_remove_dir(struct dentry *dentry)
    +{
    + container_clear_directory(dentry);
    +
    + spin_lock(&dcache_lock);
    + list_del_init(&dentry->d_u.d_child);
    + spin_unlock(&dcache_lock);
    + remove_dir(dentry);
    +}
    +
    +static int rebind_subsystems(struct containerfs_root *root,
    + unsigned long final_bits)
    +{
    + unsigned long added_bits, removed_bits;
    + struct container *cont = &root->top_container;
    + int i;
    +
    + removed_bits = root->subsys_bits & ~final_bits;
    + added_bits = final_bits & ~root->subsys_bits;
    + /* Check that any added subsystems are currently free */
    + for (i = 0; i < CONTAINER_SUBSYS_COUNT; i++) {
    + unsigned long long bit = 1ull << i;
    + struct container_subsys *ss = subsys[i];
    + if (!(bit & added_bits))
    + continue;
    + if (ss->root != &rootnode) {
    + /* Subsystem isn't free */
    + return -EBUSY;
    + }
    + }
    +
    + /* Currently we don't handle adding/removing subsystems when
    + * any subcontainers exist. This is theoretically supportable
    + * but involves complex erro r handling, so it's being left until
    + * later */
    + if (!list_empty(&cont->children)) {
    + return -EBUSY;
    + }
    +
    + /* Process each subsystem */
    + for (i = 0; i < CONTAINER_SUBSYS_COUNT; i++) {
    + struct container_subsys *ss = subsys[i];
    + unsigned long bit = 1UL << i;
    + if (bit & added_bits) {
    + /* We're binding this subsystem to this hierarchy */
    + BUG_ON(cont->subsys[i]);
    + BUG_ON(!dummytop->subsys[i]);
    + BUG_ON(dummytop->subsys[i]->container != dummytop);
    + cont->subsys[i] = dummytop->subsys[i];
    + cont->subsys[i]->container = cont;
    + list_add(&ss->sibling, &root->subsys_list);
    + rcu_assign_pointer(ss->root, root);
    + if (ss->bind)
    + ss->bind(ss, cont);
    +
    + } else if (bit & removed_bits) {
    + /* We're removing this subsystem */
    + BUG_ON(cont->subsys[i] != dummytop->subsys[i]);
    + BUG_ON(cont->subsys[i]->container != cont);
    + if (ss->bind)
    + ss->bind(ss, dummytop);
    + dummytop->subsys[i]->container = dummytop;
    + cont->subsys[i] = NULL;
    + rcu_assign_pointer(subsys[i]->root, &rootnode);
    + list_del(&ss->sibling);
    + } else if (bit & final_bits) {
    + /* Subsystem state should already exist */
    + BUG_ON(!cont->subsys[i]);
    + } else {
    + /* Subsystem state shouldn't exist */
    + BUG_ON(cont->subsys[i]);
    + }
    + }
    + root->subsys_bits = final_bits;
    + synchronize_rcu();
    +
    + return 0;
    +}
    +
    +/*
    + * Release the last use of a hierarchy. Will never be called when
    + * there are active subcontainers since each subcontainer bumps the
    + * value of sb->s_active.
    + */
    +
    +static void container_put_super(struct super_block *sb) {
    +
    + struct containerfs_root *root = sb->s_fs_info;
    + struct container *cont = &root->top_container;
    + int ret;
    +
    + root->sb = NULL;
    + sb->s_fs_info = NULL;
    +
    + mutex_lock(&container_mutex);
    +
    + BUG_ON(root->number_of_containers != 1);
    + BUG_ON(!list_empty(&cont->children));
    + BUG_ON(!list_empty(&cont->sibling));
    + BUG_ON(!root->subsys_bits);
    +
    + /* Rebind all subsystems back to the default hierarchy */
    + ret = rebind_subsystems(root, 0);
    + BUG_ON(ret);
    +
    + kfree(root);
    + mutex_unlock(&container_mutex);
    +}
    +
    +static int container_show_options(struct seq_file *seq, struct vfsmount *vfs)
    +{
    + struct containerfs_root *root = vfs->mnt_sb->s_fs_info;
    + struct container_subsys *ss;
    + for_each_subsys(root, ss) {
    + seq_printf(seq, ",%s", ss->name);
    + }
    + return 0;
    +}
    +
    +/* Convert a hierarchy specifier into a bitmask. LL=container_mutex */
    +static int parse_containerfs_options(char *opts, unsigned long *bits)
    +{
    + char *token, *o = opts ?: "all";
    +
    + *bits = 0;
    +
    + while ((token = strsep(&o, ",")) != NULL) {
    + if (!*token)
    + return -EINVAL;
    + if (!strcmp(token, "all")) {
    + *bits = (1 << CONTAINER_SUBSYS_COUNT) - 1;
    + } else {
    + struct container_subsys *ss;
    + int i;
    + for (i = 0; i < CONTAINER_SUBSYS_COUNT; i++) {
    + ss = subsys[i];
    + if (!strcmp(token, ss->name)) {
    + *bits |= 1 << i;
    + break;
    + }
    + }
    + if (i == CONTAINER_SUBSYS_COUNT)
    + return -ENOENT;
    + }
    + }
    +
    + /* We can't have an empty hierarchy */
    + if (!*bits)
    + return -EINVAL;
    +
    + return 0;
    +}
    +
    +static int container_remount(struct super_block *sb, int *flags, char *data)
    +{
    + int ret = 0;
    + unsigned long subsys_bits;
    + struct containerfs_root *root = sb->s_fs_info;
    + struct container *cont = &root->top_container;
    +
    + mutex_lock(&cont->dentry->d_inode->i_mutex);
    + mutex_lock(&container_mutex);
    +
    + /* See what subsystems are wanted */
    + ret = parse_containerfs_options(data, &subsys_bits);
    + if (ret)
    + goto out_unlock;
    +
    + ret = rebind_subsystems(root, subsys_bits);
    +
    + /* (re)populate subsystem files */
    + if (!ret)
    + container_populate_dir(cont);
    +
    + out_unlock:
    + mutex_unlock(&container_mutex);
    + mutex_unlock(&cont->dentry->d_inode->i_mutex);
    + return ret;
    +}
    +
    +static struct super_operations container_ops = {
    + .statfs = simple_statfs,
    + .drop_inode = generic_delete_inode,
    + .put_super = container_put_super,
    + .show_options = container_show_options,
    + .remount_fs = container_remount,
    +};
    +
    +static int container_fill_super(struct super_block *sb, void *options,
    + int unused_silent)
    +{
    + struct inode *inode;
    + struct dentry *root;
    + struct containerfs_root *hroot = options;
    +
    + sb->s_blocksize = PAGE_CACHE_SIZE;
    + sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
    + sb->s_magic = CONTAINER_SUPER_MAGIC;
    + sb->s_op = &container_ops;
    +
    + inode = container_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
    + if (!inode)
    + return -ENOMEM;
    +
    + inode->i_op = &simple_dir_inode_operations;
    + inode->i_fop = &simple_dir_operations;
    + inode->i_op = &container_dir_inode_operations;
    + /* directories start off with i_nlink == 2 (for "." entry) */
    + inc_nlink(inode);
    +
    + root = d_alloc_root(inode);
    + if (!root) {
    + iput(inode);
    + return -ENOMEM;
    + }
    + sb->s_root = root;
    + root->d_fsdata = &hroot->top_container;
    + hroot->top_container.dentry = root;
    +
    + sb->s_fs_info = hroot;
    + hroot->sb = sb;
    +
    + return 0;
    +}
    +
    +static void init_container_root(struct containerfs_root *root) {
    + struct container *cont = &root->top_container;
    + INIT_LIST_HEAD(&root->subsys_list);
    + root->number_of_containers = 1;
    + cont->root = root;
    + cont->top_container = cont;
    + INIT_LIST_HEAD(&cont->sibling);
    + INIT_LIST_HEAD(&cont->children);
    + list_add(&root->root_list, &roots);
    +}
    +
    +static int container_get_sb(struct file_system_type *fs_type,
    + int flags, const char *unused_dev_name,
    + void *data, struct vfsmount *mnt)
    +{
    + unsigned long subsys_bits = 0;
    + int ret = 0;
    + struct containerfs_root *root = NULL;
    + int use_existing = 0;
    +
    + mutex_lock(&container_mutex);
    +
    + /* First find the desired set of resource controllers */
    + ret = parse_containerfs_options(data, &subsys_bits);
    + if (ret)
    + goto out_unlock;
    +
    + /* See if we already have a hierarchy containing this set */
    +
    + for_each_root(root) {
    + /* We match - use this hieracrchy */
    + if (root->subsys_bits == subsys_bits) {
    + use_existing = 1;
    + break;
    + }
    + /* We clash - fail */
    + if (root->subsys_bits & subsys_bits) {
    + ret = -EBUSY;
    + goto out_unlock;
    + }
    + }
    +
    + if (!use_existing) {
    + /* We need a new root */
    + root = kzalloc(sizeof(*root), GFP_KERNEL);
    + if (!root) {
    + ret = -ENOMEM;
    + goto out_unlock;
    + }
    + init_container_root(root);
    + }
    +
    + if (!root->sb) {
    + /* We need a new superblock for this container combination */
    + struct container *cont = &root->top_container;
    +
    + BUG_ON(root->subsys_bits);
    + ret = get_sb_nodev(fs_type, flags, root,
    + container_fill_super, mnt);
    + if (ret)
    + goto out_unlock;
    +
    + BUG_ON(!list_empty(&cont->sibling));
    + BUG_ON(!list_empty(&cont->children));
    + BUG_ON(root->number_of_containers != 1);
    +
    + ret = rebind_subsystems(root, subsys_bits);
    +
    + /* It's safe to nest i_mutex inside container_mutex in
    + * this case, since no-one else can be accessing this
    + * directory yet */
    + mutex_lock(&cont->dentry->d_inode->i_mutex);
    + container_populate_dir(cont);
    + mutex_unlock(&cont->dentry->d_inode->i_mutex);
    + BUG_ON(ret);
    +
    + } else {
    + /* Reuse the existing superblock */
    + ret = simple_set_mnt(mnt, root->sb);
    + if (!ret)
    + atomic_inc(&root->sb->s_active);
    + }
    +
    + out_unlock:
    + mutex_unlock(&container_mutex);
    + return ret;
    +}
    +
    +static struct file_system_type container_fs_type = {
    + .name = "container",
    + .get_sb = container_get_sb,
    + .kill_sb = kill_litter_super,
    +};
    +
    +static inline struct container *__d_cont(struct dentry *dentry)
    +{
    + return dentry->d_fsdata;
    +}
    +
    +static inline struct cftype *__d_cft(struct dentry *dentry)
    +{
    + return dentry->d_fsdata;
    +}
    +
    +/*
    + * Call with container_mutex held. Writes path of container into buf.
    + * Returns 0 on success, -errno on error.
    + */
    +
    +int container_path(const struct container *cont, char *buf, int buflen)
    +{
    + char *start;
    +
    + start = buf + buflen;
    +
    + *--start = '\0';
    + for (;;) {
    + int len = cont->dentry->d_name.len;
    + if ((start -= len) < buf)
    + return -ENAMETOOLONG;
    + memcpy(start, cont->dentry->d_name.name, len);
    + cont = cont->parent;
    + if (!cont)
    + break;
    + if (!cont->parent)
    + continue;
    + if (--start < buf)
    + return -ENAMETOOLONG;
    + *start = '/';
    + }
    + memmove(buf, start, buf + buflen - start);
    + return 0;
    +}
    +
    +static inline void get_first_subsys(const struct container *cont,
    + struct container_subsys_state **css,
    + int *subsys_id) {
    + const struct containerfs_root *root = cont->root;
    + const struct container_subsys *test_ss;
    + BUG_ON(list_empty(&root->subsys_list));
    + test_ss = list_entry(root->subsys_list.next,
    + struct container_subsys, sibling);
    + if (css) {
    + *css = cont->subsys[test_ss->subsys_id];
    + BUG_ON(!*css);
    + }
    + if (subsys_id)
    + *subsys_id = test_ss->subsys_id;
    +}
    +
    +/* The various types of files and directories in a container file system */
    +
    +typedef enum {
    + FILE_ROOT,
    + FILE_DIR,
    + FILE_TASKLIST,
    +} container_filetype_t;
    +
    +static ssize_t container_file_write(struct file *file, const char __user *buf,
    + size_t nbytes, loff_t *ppos)
    +{
    + struct cftype *cft = __d_cft(file->f_dentry);
    + struct container *cont = __d_cont(file->f_dentry->d_parent);
    + if (!cft)
    + return -ENODEV;
    + if (!cft->write)
    + return -EINVAL;
    +
    + return cft->write(cont, cft, file, buf, nbytes, ppos);
    +}
    +
    +static ssize_t container_read_uint(struct container *cont, struct cftype *cft,
    + struct file *file,
    + char __user *buf, size_t nbytes,
    + loff_t *ppos)
    +{
    + char tmp[64];
    + u64 val = cft->read_uint(cont, cft);
    + int len = sprintf(tmp, "%llu", val);
    + return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
    +}
    +
    +static ssize_t container_file_read(struct file *file, char __user *buf,
    + size_t nbytes, loff_t *ppos)
    +{
    + struct cftype *cft = __d_cft(file->f_dentry);
    + struct container *cont = __d_cont(file->f_dentry->d_parent);
    + if (!cft)
    + return -ENODEV;
    +
    + if (cft->read)
    + return cft->read(cont, cft, file, buf, nbytes, ppos);
    + if (cft->read_uint)
    + return container_read_uint(cont, cft, file, buf, nbytes, ppos);
    + return -EINVAL;
    +}
    +
    +static int container_file_open(struct inode *inode, struct file *file)
    +{
    + int err;
    + struct cftype *cft;
    +
    + err = generic_file_open(inode, file);
    + if (err)
    + return err;
    +
    + cft = __d_cft(file->f_dentry);
    + if (!cft)
    + return -ENODEV;
    + if (cft->open)
    + err = cft->open(inode, file);
    + else
    + err = 0;
    +
    + return err;
    +}
    +
    +static int container_file_release(struct inode *inode, struct file *file)
    +{
    + struct cftype *cft = __d_cft(file->f_dentry);
    + if (cft->release)
    + return cft->release(inode, file);
    + return 0;
    +}
    +
    +/*
    + * container_rename - Only allow simple rename of directories in place.
    + */
    +static int container_rename(struct inode *old_dir, struct dentry *old_dentry,
    + struct inode *new_dir, struct dentry *new_dentry)
    +{
    + if (!S_ISDIR(old_dentry->d_inode->i_mode))
    + return -ENOTDIR;
    + if (new_dentry->d_inode)
    + return -EEXIST;
    + if (old_dir != new_dir)
    + return -EIO;
    + return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
    +}
    +
    +static struct file_operations container_file_operations = {
    + .read = container_file_read,
    + .write = container_file_write,
    + .llseek = generic_file_llseek,
    + .open = container_file_open,
    + .release = container_file_release,
    +};
    +
    +static struct inode_operations container_dir_inode_operations = {
    + .lookup = simple_lookup,
    + .mkdir = container_mkdir,
    + .rmdir = container_rmdir,
    + .rename = container_rename,
    +};
    +
    +static int container_create_file(struct dentry *dentry, int mode, struct super_block *sb)
    +{
    + struct inode *inode;
    +
    + if (!dentry)
    + return -ENOENT;
    + if (dentry->d_inode)
    + return -EEXIST;
    +
    + inode = container_new_inode(mode, sb);
    + if (!inode)
    + return -ENOMEM;
    +
    + if (S_ISDIR(mode)) {
    + inode->i_op = &container_dir_inode_operations;
    + inode->i_fop = &simple_dir_operations;
    +
    + /* start off with i_nlink == 2 (for "." entry) */
    + inc_nlink(inode);
    +
    + /* start with the directory inode held, so that we can
    + * populate it without racing with another mkdir */
    + mutex_lock(&inode->i_mutex);
    + } else if (S_ISREG(mode)) {
    + inode->i_size = 0;
    + inode->i_fop = &container_file_operations;
    + }
    +
    + d_instantiate(dentry, inode);
    + dget(dentry); /* Extra count - pin the dentry in core */
    + return 0;
    +}
    +
    +/*
    + * container_create_dir - create a directory for an object.
    + * cont: the container we create the directory for.
    + * It must have a valid ->parent field
    + * And we are going to fill its ->dentry field.
    + * name: The name to give to the container directory. Will be copied.
    + * mode: mode to set on new directory.
    + */
    +
    +static int container_create_dir(struct container *cont, struct dentry *dentry,
    + int mode)
    +{
    + struct dentry *parent;
    + int error = 0;
    +
    + parent = cont->parent->dentry;
    + if (IS_ERR(dentry))
    + return PTR_ERR(dentry);
    + error = container_create_file(dentry, S_IFDIR | mode, cont->root->sb);
    + if (!error) {
    + dentry->d_fsdata = cont;
    + inc_nlink(parent->d_inode);
    + cont->dentry = dentry;
    + }
    + dput(dentry);
    +
    + return error;
    +}
    +
    +int container_add_file(struct container *cont, const struct cftype *cft)
    +{
    + struct dentry *dir = cont->dentry;
    + struct dentry *dentry;
    + int error;
    +
    + BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
    + dentry = container_get_dentry(dir, cft->name);
    + if (!IS_ERR(dentry)) {
    + error = container_create_file(dentry, 0644 | S_IFREG, cont->root->sb);
    + if (!error)
    + dentry->d_fsdata = (void *)cft;
    + dput(dentry);
    + } else
    + error = PTR_ERR(dentry);
    + return error;
    +}
    +
    +int container_add_files(struct container *cont, const struct cftype cft[],
    + int count)
    +{
    + int i, err;
    + for (i = 0; i < count; i++) {
    + if ((err = container_add_file(cont, &cft[i])))
    + return err;
    + }
    + return 0;
    +}
    +
    +static int container_populate_dir(struct container *cont)
    +{
    + int err;
    + struct container_subsys *ss;
    +
    + /* First clear out any existing files */
    + container_clear_directory(cont->dentry);
    +
    + for_each_subsys(cont->root, ss) {
    + if (ss->populate && (err = ss->populate(ss, cont)) < 0)
    + return err;
    + }
    +
    + return 0;
    +}
    +
    +static void init_container_css(struct container_subsys *ss,
    + struct container *cont)
    +{
    + struct container_subsys_state *css = cont->subsys[ss->subsys_id];
    + css->container = cont;
    + atomic_set(&css->refcnt, 0);
    +}
    +
    +/*
    + * container_create - create a container
    + * parent: container that will be parent of the new container.
    + * name: name of the new container. Will be strcpy'ed.
    + * mode: mode to set on new inode
    + *
    + * Must be called with the mutex on the parent inode held
    + */
    +
    +static long container_create(struct container *parent, struct dentry *dentry,
    + int mode)
    +{
    + struct container *cont;
    + struct containerfs_root *root = parent->root;
    + int err = 0;
    + struct container_subsys *ss;
    + struct super_block *sb = root->sb;
    +
    + cont = kzalloc(sizeof(*cont), GFP_KERNEL);
    + if (!cont)
    + return -ENOMEM;
    +
    + /* Grab a reference on the superblock so the hierarchy doesn't
    + * get deleted on unmount if there are child containers. This
    + * can be done outside container_mutex, since the sb can't
    + * disappear while someone has an open control file on the
    + * fs */
    + atomic_inc(&sb->s_active);
    +
    + mutex_lock(&container_mutex);
    +
    + cont->flags = 0;
    + INIT_LIST_HEAD(&cont->sibling);
    + INIT_LIST_HEAD(&cont->children);
    +
    + cont->parent = parent;
    + cont->root = parent->root;
    + cont->top_container = parent->top_container;
    +
    + for_each_subsys(root, ss) {
    + err = ss->create(ss, cont);
    + if (err) goto err_destroy;
    + init_container_css(ss, cont);
    + }
    +
    + list_add(&cont->sibling, &cont->parent->children);
    + root->number_of_containers++;
    +
    + err = container_create_dir(cont, dentry, mode);
    + if (err < 0)
    + goto err_remove;
    +
    + /* The container directory was pre-locked for us */
    + BUG_ON(!mutex_is_locked(&cont->dentry->d_inode->i_mutex));
    +
    + err = container_populate_dir(cont);
    + /* If err < 0, we have a half-filled directory - oh well ;) */
    +
    + mutex_unlock(&container_mutex);
    + mutex_unlock(&cont->dentry->d_inode->i_mutex);
    +
    + return 0;
    +
    + err_remove:
    +
    + list_del(&cont->sibling);
    + root->number_of_containers--;
    +
    + err_destroy:
    +
    + for_each_subsys(root, ss) {
    + if (cont->subsys[ss->subsys_id])
    + ss->destroy(ss, cont);
    + }
    +
    + mutex_unlock(&container_mutex);
    +
    + /* Release the reference count that we took on the superblock */
    + deactivate_super(sb);
    +
    + kfree(cont);
    + return err;
    +}
    +
    +static int container_mkdir(struct inode *dir, struct dentry *dentry, int mode)
    +{
    + struct container *c_parent = dentry->d_parent->d_fsdata;
    +
    + /* the vfs holds inode->i_mutex already */
    + return container_create(c_parent, dentry, mode | S_IFDIR);
    +}
    +
    +static int container_rmdir(struct inode *unused_dir, struct dentry *dentry)
    +{
    + struct container *cont = dentry->d_fsdata;
    + struct dentry *d;
    + struct container *parent;
    + struct container_subsys *ss;
    + struct super_block *sb;
    + struct containerfs_root *root;
    + int css_busy = 0;
    +
    + /* the vfs holds both inode->i_mutex already */
    +
    + mutex_lock(&container_mutex);
    + if (atomic_read(&cont->count) != 0) {
    + mutex_unlock(&container_mutex);
    + return -EBUSY;
    + }
    + if (!list_empty(&cont->children)) {
    + mutex_unlock(&container_mutex);
    + return -EBUSY;
    + }
    +
    + parent = cont->parent;
    + root = cont->root;
    + sb = root->sb;
    +
    + /* Check the reference count on each subsystem. Since we
    + * already established that there are no tasks in the
    + * container, if the css refcount is also 0, then there should
    + * be no outstanding references, so the subsystem is safe to
    + * destroy */
    + for_each_subsys(root, ss) {
    + struct container_subsys_state *css;
    + css = cont->subsys[ss->subsys_id];
    + if (atomic_read(&css->refcnt)) {
    + css_busy = 1;
    + break;
    + }
    + }
    + if (css_busy) {
    + mutex_unlock(&container_mutex);
    + return -EBUSY;
    + }
    +
    + for_each_subsys(root, ss) {
    + if (cont->subsys[ss->subsys_id])
    + ss->destroy(ss, cont);
    + }
    +
    + set_bit(CONT_REMOVED, &cont->flags);
    + /* delete my sibling from parent->children */
    + list_del(&cont->sibling);
    + spin_lock(&cont->dentry->d_lock);
    + d = dget(cont->dentry);
    + cont->dentry = NULL;
    + spin_unlock(&d->d_lock);
    +
    + container_d_remove_dir(d);
    + dput(d);
    + root->number_of_containers--;
    +
    + mutex_unlock(&container_mutex);
    + /* Drop the active superblock reference that we took when we
    + * created the container */
    + deactivate_super(sb);
    + return 0;
    +}
    +
    +static void container_init_subsys(struct container_subsys *ss) {
    + int retval;
    + struct task_struct *g, *p;
    + struct container_subsys_state *css;
    + printk(KERN_ERR "Initializing container subsys %s\n", ss->name);
    +
    + /* Create the top container state for this subsystem */
    + ss->root = &rootnode;
    + retval = ss->create(ss, dummytop);
    + BUG_ON(retval);
    + BUG_ON(!dummytop->subsys[ss->subsys_id]);
    + init_container_css(ss, dummytop);
    + css = dummytop->subsys[ss->subsys_id];
    +
    + /* Update all tasks to contain a subsys pointer to this state
    + * - since the subsystem is newly registered, all tasks are in
    + * the subsystem's top container. */
    +
    + /* If this subsystem requested that it be notified with fork
    + * events, we should send it one now for every process in the
    + * system */
    +
    + read_lock(&tasklist_lock);
    + init_task.containers.subsys[ss->subsys_id] = css;
    + if (ss->fork)
    + ss->fork(ss, &init_task);
    +
    + do_each_thread(g, p) {
    + printk(KERN_INFO "Setting task %p css to %p (%d)\n", css, p, p->pid);
    + p->containers.subsys[ss->subsys_id] = css;
    + if (ss->fork)
    + ss->fork(ss, p);
    + } while_each_thread(g, p);
    + read_unlock(&tasklist_lock);
    +
    + need_forkexit_callback |= ss->fork || ss->exit;
    +
    + ss->active = 1;
    +}
    +
    +/**
    + * container_init_early - initialize containers at system boot, and
    + * initialize any subsystems that request early init.
    + *
    + **/
    +
    +int __init container_init_early(void)
    +{
    + int i;
    + init_container_root(&rootnode);
    +
    + for (i = 0; i < CONTAINER_SUBSYS_COUNT; i++) {
    + struct container_subsys *ss = subsys[i];
    +
    + BUG_ON(!ss->name);
    + BUG_ON(strlen(ss->name) > MAX_CONTAINER_TYPE_NAMELEN);
    + BUG_ON(!ss->create);
    + BUG_ON(!ss->destroy);
    + if (ss->subsys_id != i) {
    + printk(KERN_ERR "Subsys %s id == %d\n",
    + ss->name, ss->subsys_id);
    + BUG();
    + }
    +
    + if (ss->early_init)
    + container_init_subsys(ss);
    + }
    + return 0;
    +}
    +
    +/**
    + * container_init - register container filesystem and /proc file, and
    + * initialize any subsystems that didn't request early init.
    + **/
    +
    +int __init container_init(void)
    +{
    + int err;
    + int i;
    +
    + for (i = 0; i < CONTAINER_SUBSYS_COUNT; i++) {
    + struct container_subsys *ss = subsys[i];
    + if (!ss->early_init)
    + container_init_subsys(ss);
    + }
    +
    + err = register_filesystem(&container_fs_type);
    + if (err < 0)
    + goto out;
    +
    +out:
    + return err;
    +}
    --
    -
    To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
    the body of a message to majordomo@vger.kernel.org
    More majordomo info at http://vger.kernel.org/majordomo-info.html
    Please read the FAQ at http://www.tux.org/lkml/

    \
     
     \ /
      Last update: 2007-04-27 13:21    [W:4.876 / U:0.036 seconds]
    ©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site