lkml.org 
[lkml]   [2005]   [Dec]   [18]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
From
SubjectRe: [PATCH/RFC] SPI: async message handing library update
Date
OK, I made some time to look at that.  As I've mentioned already,
the "spi_bitbang" code needed to morph in this direction, and
that was in fact the patch I was hoping you'd be sending. So I
finished that up instead, and have sent it separately ... but
I've also attached the C file to this response.


> +struct threaded_async_data {
> + atomic_t exiting;
> + struct spi_master *master;
> + struct task_struct *thread;
> + wait_queue_head_t wq;

I just kept the workqueue, named after its device.
It makes the code look a lot simpler!


> + struct list_head msgs;
> + spinlock_t lock;

> + int (*xfer) (struct spi_master *, struct spi_message *);
> +};
> +
> +/**
> + * spi_start_async - start the thread
> + * @master: SPI controller structure which the thread is related to
> + * @return: abstract pointer to the thread context
> + */
> +int spi_start_async (struct spi_master *master, int (*xfer)(struct spi_master *,
> struct spi_message *))

I did this differently, but liked your start/stop names. :)
So:
int spi_bitbang_start(struct spi_bitbang *bitbang);
int spi_bitbang_stop(struct spi_bitbang *bitbang);

to start and stop processing the queue associated with the bitbanged
spi_master. Callbacks just get stored in the structure; simpler,
and the return value is just a normal zero-or-negative-errno.


> @@ -152,6 +152,7 @@ static inline void spi_unregister_driver
> * device's SPI controller; protocol code may call this.
> * @transfer: adds a message to the controller's transfer queue.
> * @cleanup: frees controller-specific state
> + * @context: controller-specific data
> *
> * Each SPI master controller can communicate with one or more spi_device
> * children. These make a small bus, sharing MOSI, MISO and SCK signals

I've not seen a need for that yet; the class_get_devdata() is doing
that already. And it's now wrapped up as spi_master_get_devdata().

- Dave
/*
* spi_bitbang.c - polling/bitbanging SPI master controller driver utilities
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/

#include <linux/config.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/platform_device.h>

#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>


/*----------------------------------------------------------------------*/

/*
* FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
* Use this for GPIO or shift-register level hardware APIs.
*
* spi_bitbang_cs is in spi_device->controller_state, which is unavailable
* to glue code. These bitbang setup() and cleanup() routines are always
* used, though maybe they're called from controller-aware code.
*
* chipselect() and friends may use use spi_device->controller_data and
* controller registers as appropriate.
*
*
* NOTE: SPI controller pins can often be used as GPIO pins instead,
* which means you could use a bitbang driver either to get hardware
* working quickly, or testing for differences that aren't speed related.
*/

struct spi_bitbang_cs {
unsigned nsecs; /* (clock cycle time)/2 */
u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
u32 word, u8 bits);
unsigned (*txrx_bufs)(struct spi_device *,
u32 (*txrx_word)(
struct spi_device *spi,
unsigned nsecs,
u32 word, u8 bits),
unsigned, struct spi_transfer *);
};

static unsigned bitbang_txrx_8(
struct spi_device *spi,
u32 (*txrx_word)(struct spi_device *spi,
unsigned nsecs,
u32 word, u8 bits),
unsigned ns,
struct spi_transfer *t
) {
unsigned bits = spi->bits_per_word;
unsigned count = t->len;
const u8 *tx = t->tx_buf;
u8 *rx = t->rx_buf;

while (likely(count > 0)) {
u8 word = 0;

if (tx)
word = *tx++;
word = txrx_word(spi, ns, word, bits);
if (rx)
*rx++ = word;
count -= 1;
}
return t->len - count;
}

static unsigned bitbang_txrx_16(
struct spi_device *spi,
u32 (*txrx_word)(struct spi_device *spi,
unsigned nsecs,
u32 word, u8 bits),
unsigned ns,
struct spi_transfer *t
) {
unsigned bits = spi->bits_per_word;
unsigned count = t->len;
const u16 *tx = t->tx_buf;
u16 *rx = t->rx_buf;

while (likely(count > 1)) {
u16 word = 0;

if (tx)
word = *tx++;
word = txrx_word(spi, ns, word, bits);
if (rx)
*rx++ = word;
count -= 2;
}
return t->len - count;
}

static unsigned bitbang_txrx_32(
struct spi_device *spi,
u32 (*txrx_word)(struct spi_device *spi,
unsigned nsecs,
u32 word, u8 bits),
unsigned ns,
struct spi_transfer *t
) {
unsigned bits = spi->bits_per_word;
unsigned count = t->len;
const u32 *tx = t->tx_buf;
u32 *rx = t->rx_buf;

while (likely(count > 3)) {
u32 word = 0;

if (tx)
word = *tx++;
word = txrx_word(spi, ns, word, bits);
if (rx)
*rx++ = word;
count -= 4;
}
return t->len - count;
}

/**
* spi_bitbang_setup - default setup for per-word I/O loops
*/
int spi_bitbang_setup(struct spi_device *spi)
{
struct spi_bitbang_cs *cs = spi->controller_state;
struct spi_bitbang *bitbang;

if (!cs) {
cs = kzalloc(sizeof *cs, SLAB_KERNEL);
if (!cs)
return -ENOMEM;
spi->controller_state = cs;
}
bitbang = spi_master_get_devdata(spi->master);

if (!spi->bits_per_word)
spi->bits_per_word = 8;

/* spi_transfer level calls that work per-word */
if (spi->bits_per_word <= 8)
cs->txrx_bufs = bitbang_txrx_8;
else if (spi->bits_per_word <= 16)
cs->txrx_bufs = bitbang_txrx_16;
else if (spi->bits_per_word <= 32)
cs->txrx_bufs = bitbang_txrx_32;
else
return -EINVAL;

/* per-word shift register access, in hardware or bitbanging */
cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
if (!cs->txrx_word)
return -EINVAL;

if (!spi->max_speed_hz)
spi->max_speed_hz = 500 * 1000;

/* nsecs = max(50, (clock period)/2), be optimistic */
cs->nsecs = (1000000000/2) / (spi->max_speed_hz);
if (cs->nsecs < 50)
cs->nsecs = 50;
if (cs->nsecs > MAX_UDELAY_MS * 1000)
return -EINVAL;

dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec\n",
__FUNCTION__, spi->mode & (SPI_CPOL | SPI_CPHA),
spi->bits_per_word, 2 * cs->nsecs);

/* NOTE we _need_ to call chipselect() early, ideally with adapter
* setup, unless the hardware defaults cooperate to avoid confusion
* between normal (active low) and inverted chipselects.
*/

/* deselect chip (low or high) */
spin_lock(&bitbang->lock);
if (!bitbang->busy) {
bitbang->chipselect(spi, 0);
ndelay(cs->nsecs);
}
spin_unlock(&bitbang->lock);

return 0;
}
EXPORT_SYMBOL_GPL(spi_bitbang_setup);

/**
* spi_bitbang_cleanup - default cleanup for per-word I/O loops
*/
void spi_bitbang_cleanup(const struct spi_device *spi)
{
kfree(spi->controller_state);
}
EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);

static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
{
struct spi_bitbang_cs *cs = spi->controller_state;
unsigned nsecs = cs->nsecs;

return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
}

/*----------------------------------------------------------------------*/

/*
* SECOND PART ... simple transfer queue runner.
*
* This costs a task context per controller, running the queue by
* performing each transfer in sequence. Smarter hardware can queue
* several DMA transfers at once, and process several controller queues
* in parallel; this driver doesn't match such hardware very well.
*
* Drivers can provide word-at-a-time i/o primitives, or provide
* transfer-at-a-time ones to leverage dma or fifo hardware.
*/
static void bitbang_work(void *_bitbang)
{
struct spi_bitbang *bitbang = _bitbang;
unsigned long flags;

spin_lock_irqsave(&bitbang->lock, flags);
bitbang->busy = 1;
while (!list_empty(&bitbang->queue)) {
struct spi_message *m;
struct spi_device *spi;
unsigned nsecs;
struct spi_transfer *t;
unsigned tmp;
unsigned chipselect;
int status;

m = container_of(bitbang->queue.next, struct spi_message,
queue);
list_del_init(&m->queue);
spin_unlock_irqrestore(&bitbang->lock, flags);

// FIXME this is made-up
nsecs = 100;

spi = m->spi;
t = m->transfers;
tmp = 0;
chipselect = 0;
status = 0;

for (;;t++) {
if (bitbang->shutdown) {
status = -ESHUTDOWN;
break;
}

/* set up default clock polarity, and activate chip */
if (!chipselect) {
bitbang->chipselect(spi, 1);
ndelay(nsecs);
}
if (!t->tx_buf && !t->rx_buf && t->len) {
status = -EINVAL;
break;
}

/* transfer data */
if (t->len) {
/* FIXME if bitbang->use_dma, dma_map_single()
* before the transfer, and dma_unmap_single()
* afterwards, for either or both buffers...
*/
status = bitbang->txrx_bufs(spi, t);
}
if (status != t->len) {
if (status > 0)
status = -EMSGSIZE;
break;
}
m->actual_length += status;
status = 0;

/* protocol tweaks before next transfer */
if (t->delay_usecs)
udelay(t->delay_usecs);

tmp++;
if (tmp >= m->n_transfer)
break;

chipselect = !t->cs_change;
if (chipselect);
continue;

bitbang->chipselect(spi, 0);

/* REVISIT do we want the udelay here instead? */
msleep(1);
}

tmp = m->n_transfer - 1;
tmp = m->transfers[tmp].cs_change;

m->status = status;
m->complete(m->context);

ndelay(2 * nsecs);
bitbang->chipselect(spi, status == 0 && tmp);
ndelay(nsecs);

spin_lock_irqsave(&bitbang->lock, flags);
}
bitbang->busy = 0;
spin_unlock_irqrestore(&bitbang->lock, flags);
}

/**
* spi_bitbang_transfer - default submit to transfer queue
*/
int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
{
struct spi_bitbang *bitbang;
unsigned long flags;

m->actual_length = 0;
m->status = -EINPROGRESS;

bitbang = spi_master_get_devdata(spi->master);
if (bitbang->shutdown)
return -ESHUTDOWN;

spin_lock_irqsave(&bitbang->lock, flags);
list_add_tail(&m->queue, &bitbang->queue);
queue_work(bitbang->workqueue, &bitbang->work);
spin_unlock_irqrestore(&bitbang->lock, flags);

return 0;
}
EXPORT_SYMBOL_GPL(spi_bitbang_transfer);

/*----------------------------------------------------------------------*/

/**
* spi_bitbang_start - start up a polled/bitbanging SPI master driver
* @bitbang: driver handle
*
* Caller should have zero-initialized all parts of the structure, and then
* provided callbacks for chip selection and I/O loops. If the master has
* a transfer method, its final step should call spi_bitbang_transfer; or,
* that's the default if the transfer routine is not initialized. It should
* also set up the bus number and number of chipselects.
*
* For i/o loops, provide callbacks either per-word (for bitbanging, or for
* hardware that basically exposes a shift register) or per-spi_transfer
* (which takes better advantage of hardware like fifos or DMA engines).
*
* Drivers using per-word I/O loops should use (or call) spi_bitbang_setup and
* spi_bitbang_cleanup to handle those spi master methods. Those methods are
* the defaults if the bitbang->txrx_bufs routine isn't initialized.
*
* This routine registers the spi_master, which will process requests in a
* dedicated task, keeping IRQs unblocked most of the time. To stop
* processing those requests, call spi_bitbang_stop().
*/
int spi_bitbang_start(struct spi_bitbang *bitbang)
{
int status;

if (!bitbang->master || !bitbang->chipselect)
return -EINVAL;

INIT_WORK(&bitbang->work, bitbang_work, bitbang);
spin_lock_init(&bitbang->lock);
INIT_LIST_HEAD(&bitbang->queue);

if (!bitbang->master->transfer)
bitbang->master->transfer = spi_bitbang_transfer;
if (!bitbang->txrx_bufs) {
bitbang->use_dma = 0;
bitbang->txrx_bufs = spi_bitbang_bufs;
if (!bitbang->master->setup) {
bitbang->master->setup = spi_bitbang_setup;
bitbang->master->cleanup = spi_bitbang_cleanup;
}
} else if (!bitbang->master->setup)
return -EINVAL;

/* this task is the only thing to touch the SPI bits */
bitbang->busy = 0;
bitbang->workqueue = create_singlethread_workqueue(
bitbang->master->cdev.dev->bus_id);
if (bitbang->workqueue == NULL) {
status = -EBUSY;
goto err1;
}

/* driver may get busy before register() returns, especially
* if someone registered boardinfo for devices
*/
status = spi_register_master(bitbang->master);
if (status < 0)
goto err2;

return status;

err2:
destroy_workqueue(bitbang->workqueue);
err1:
return status;
}
EXPORT_SYMBOL_GPL(spi_bitbang_start);

/**
* spi_bitbang_stop - stops the task providing spi communication
*/
int spi_bitbang_stop(struct spi_bitbang *bitbang)
{
unsigned limit = 500;

spin_lock_irq(&bitbang->lock);
bitbang->shutdown = 0;
while (!list_empty(&bitbang->queue) && limit--) {
spin_unlock_irq(&bitbang->lock);

dev_dbg(bitbang->master->cdev.dev, "wait for queue\n");
msleep(10);

spin_lock_irq(&bitbang->lock);
}
spin_unlock_irq(&bitbang->lock);
if (!list_empty(&bitbang->queue)) {
dev_err(bitbang->master->cdev.dev, "queue didn't empty\n");
return -EBUSY;
}

destroy_workqueue(bitbang->workqueue);

spi_unregister_master(bitbang->master);

return 0;
}
EXPORT_SYMBOL_GPL(spi_bitbang_stop);

MODULE_LICENSE("GPL");

\
 
 \ /
  Last update: 2005-12-18 20:19    [W:0.169 / U:0.108 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site