lkml.org 
[lkml]   [2001]   [Jan]   [12]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
SubjectRe: AMD760/765 DDR Athlon testers needed....
Hi!

Hmm, seems like I've got that one covered a while ago already ...
though I must admit my code isn't tested yet.

Vojtech

On Thu, Jan 11, 2001 at 09:46:41AM -0800, Andre Hedrick wrote:
>
> Calling AMD Geeks^H^H^H^H^HUsers,
>
> I have one of these DDR boxes from AMD with the AMD760/765 cores, if you
> have one please let me know if you wnat to test this new code?
> It is only ATA66 limited and the DOCS I have do not have the ATA100
> timings.
>
> Cheers,
>
> Andre Hedrick
> Linux ATA Development

> Inspecting /boot/System.map
> Symbol table has incorrect version number.
>
> <6>Uniform Multi-Platform E-IDE driver Revision: 6.30
> <4>ide: Assuming 33MHz system bus speed for PIO modes
> <4>AMD7411: IDE controller on PCI bus 00 dev 39
> <4>AMD7411: chipset revision 1
> <4>AMD7411: not 100% native mode: will probe irqs later
> <4> ide0: BM-DMA at 0xf000-0xf007, BIOS settings: hda:DMA, hdb:DMA
> <4> ide1: BM-DMA at 0xf008-0xf00f, BIOS settings: hdc:DMA, hdd:DMA
> <4>PDC20267: IDE controller on PCI bus 00 dev 58
> <4>PDC20267: chipset revision 2
> <4>PDC20267: not 100% native mode: will probe irqs later
> <4>PDC20267: ROM enabled at 0xe7000000
> <4>PDC20267: (U)DMA Burst Bit ENABLED Primary PCI Mode Secondary PCI Mode.
> <4> ide2: BM-DMA at 0xe800-0xe807, BIOS settings: hde:DMA, hdf:pio
> <4> ide3: BM-DMA at 0xe808-0xe80f, BIOS settings: hdg:DMA, hdh:pio
> <4>hda: QUANTUM FIREBALL CX13.0A, ATA DISK drive
> <4>hdb: QUANTUM FIREBALL CR4.3A, ATA DISK drive
> <4>hdc: ATAPI CD ROM DRIVE 50X MAX, ATAPI CDROM drive
> <4>hdd: HITACHI DVD-RAM GF-2000, ATAPI CDROM drive
> <4>ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
> <4>ide1 at 0x170-0x177,0x376 on irq 15
> <4>hda: TF.1=x00 TF.2=x00 TF.3=x00 TF.4=x00 TF.5=x00 TF.6=x40 TF.7=xf8
> <6>hda: QUANTUM FIREBALL CX13.0A, 12416MB w/418kB Cache, CHS=25228/16/63, UDMA(33)
> <4>hdb: TF.1=x00 TF.2=x00 TF.3=x00 TF.4=x00 TF.5=x00 TF.6=x40 TF.7=xf8
> <6>hdb: QUANTUM FIREBALL CR4.3A, 4110MB w/418kB Cache, CHS=14848/9/63, UDMA(66)
> <4>hdc: ATAPI 50X CD-ROM drive, 128kB Cache, UDMA(33)
> <6>Uniform CD-ROM driver Revision: 3.11
> <4>hdd: ATAPI DVD-ROM DVD-R drive, 512kB Cache, UDMA(33)

--
Vojtech Pavlik
SuSE Labs
/*
* $Id: amd7409.c,v 1.4 2000/09/19 08:33:60 vojtech Exp $
*
* Copyright (c) 2000 Vojtech Pavlik
*
* Based on the work of:
* Andre Hedrick
*
* Sponsored by SuSE
*/

/*
* AMD755/756 IDE driver for Linux.
*
* UDMA66 and higher modes are autodetected only in case the BIOS has enabled
* them. To force UDMA66, use 'ide0=ata66' or 'ide1=ata66' on the kernel
* command line. You may also need to configure the kernel IDE driver to ignore
* byte93 UDMA66 enable bits if your drives don't use them correctly.
*/

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Should you need to contact me, the author, you can do so either by
* e-mail - mail your message to <vojtech@suse.cz>, or by paper mail:
* Vojtech Pavlik, Ucitelska 1576, Prague 8, 182 00 Czech Republic
*/

#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/blkdev.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ide.h>
#include <asm/io.h>

#include "ide-timing.h"

#define AMD_IDE_ENABLE 0x40
#define AMD_IDE_CONFIG 0x41
#define AMD_CABLE_DETECT 0x42
#define AMD_DRIVE_TIMING 0x48
#define AMD_8BIT_TIMING 0x4e
#define AMD_ADDRESS_SETUP 0x4c
#define AMD_UDMA_TIMING 0x50

#define AMD_UDMA 0x07
#define AMD_UDMA_33 0x01
#define AMD_UDMA_66 0x02
#define AMD_UDMA_100 0x04
#define AMD_NO_SWDMA 0x08
#define AMD_CABLE 0x10

#ifndef PCI_DEVICE_ID_AMD_VIPPL_7411
#define PCI_DEVICE_ID_AMD_VIPPL_7411 0x7411
#endif

/*
* AMD SouthBridge chips.
*/

static struct amd_ide_chip {
char *name;
unsigned short id;
unsigned char rev;
unsigned char flags;
} amd_ide_chips[] = {
{ "766 ViperPlus", PCI_DEVICE_ID_AMD_VIPPL_7411, 0x00, AMD_UDMA_100 | AMD_CABLE },
{ "756/c4+ Viper", PCI_DEVICE_ID_AMD_VIPER_7409, 0x07, AMD_UDMA_66 },
{ "756 Viper", PCI_DEVICE_ID_AMD_VIPER_7409, 0x00, AMD_UDMA_66 | AMD_NO_SWDMA },
{ "755 Cobra", PCI_DEVICE_ID_AMD_COBRA_7401, 0x00, AMD_UDMA_33 | AMD_NO_SWDMA },
{ NULL }
};

static struct amd_ide_chip *amd_config;
static unsigned char amd_enabled;
static unsigned int amd_80w;

static unsigned char amd_cyc2udma[] = { 5, 5, 5, 4, 0, 1, 1, 2, 2, 3, 3 };
static unsigned char amd_udma2cyc[] = { 4, 6, 8, 10, 3, 2, 1, 1 };

/*
* AMD /proc entry.
*/

#ifdef CONFIG_PROC_FS

#include <linux/stat.h>
#include <linux/proc_fs.h>

int amd7409_proc, amd_base;
static struct pci_dev *bmide_dev;
extern int (*amd7409_display_info)(char *, char **, off_t, int); /* ide-proc.c */

#define amd_print(format, arg...) p += sprintf(p, format "\n" , ## arg)
#define amd_print_drive(name, format, arg...)\
p += sprintf(p, name); for (i = 0; i < 4; i++) p += sprintf(p, format, ## arg); p += sprintf(p, "\n");

static int amd_get_info(char *buffer, char **addr, off_t offset, int count)
{
short pci_clock, speed[4], cycle[4], setup[4], active[4],
recover[4], uen[4], udma[4], active8b[4], recover8b[4];
struct pci_dev *dev = bmide_dev;
unsigned int v, u, i;
unsigned short c, w;
unsigned char t;
char *p = buffer;

amd_print("----------AMD BusMastering IDE Configuration----------------");

amd_print("Driver Version: 1.4");
amd_print("South Bridge: AMD-%s", amd_config->name);

pci_read_config_byte(dev, PCI_REVISION_ID, &t);
amd_print("Revision: IDE %#x", t);

amd_print("BM-DMA base: %#x", amd_base);
amd_print("PCI clock: %dMHz", pci_clock = system_bus_clock());

amd_print("-----------------------Primary IDE-------Secondary IDE------");

pci_read_config_byte(dev, AMD_IDE_CONFIG, &t);
amd_print("Prefetch Buffer: %10s%20s", (t & 0x80) ? "yes" : "no", (t & 0x20) ? "yes" : "no");
amd_print("Post Write Buffer: %10s%20s", (t & 0x40) ? "yes" : "no", (t & 0x10) ? "yes" : "no");

pci_read_config_byte(dev, AMD_IDE_ENABLE, &t);
amd_print("Enabled: %10s%20s", (t & 0x02) ? "yes" : "no", (t & 0x01) ? "yes" : "no");

c = inb(amd_base + 0x02) | (inb(amd_base + 0x0a) << 8);
amd_print("Simplex only: %10s%20s", (c & 0x80) ? "yes" : "no", (c & 0x8000) ? "yes" : "no");

amd_print("Cable Type: %10s%20s", (amd_80w & 1) ? "80w" : "40w", (amd_80w & 2) ? "80w" : "40w");

amd_print("-------------------drive0----drive1----drive2----drive3-----");

pci_read_config_byte(dev, AMD_ADDRESS_SETUP, &t);
pci_read_config_dword(dev, AMD_DRIVE_TIMING, &v);
pci_read_config_word(dev, AMD_8BIT_TIMING, &w);
pci_read_config_dword(dev, AMD_UDMA_TIMING, &u);

for (i = 0; i < 4; i++) {
setup[i] = ((t >> ((3 - i) << 1)) & 0x3) + 1;
recover8b[i] = ((w >> ((1 - (i >> 1)) << 3)) & 0xf) + 1;
active8b[i] = ((w >> (((1 - (i >> 1)) << 3) + 4)) & 0xf) + 1;
active[i] = ((v >> (((3 - i) << 3) + 4)) & 0xf) + 1;
recover[i] = ((v >> ((3 - i) << 3)) & 0xf) + 1;

udma[i] = amd_udma2cyc[((u >> ((3 - i) << 3)) & 0x7)];
uen[i] = ((u >> ((3 - i) << 3)) & 0x40) ? 1 : 0;

speed[i] = 40 * pci_clock / (uen[i] ? udma[i] : (active[i] + recover[i]) * 2);
cycle[i] = 1000 / pci_clock * (uen[i] ? udma[i] : (active[i] + recover[i]) * 2) / 2;
}

amd_print_drive("Transfer Mode: ", "%10s",
(c & ((i & 1) ? 0x40 : 0x20) << ((i & 2) << 2)) ? (uen[i] ? "UDMA" : "DMA") : "PIO");

amd_print_drive("Address Setup: ", "%8dns", (1000 / pci_clock) * setup[i]);
amd_print_drive("Cmd Active: ", "%8dns", (1000 / pci_clock) * active8b[i]);
amd_print_drive("Cmd Recovery: ", "%8dns", (1000 / pci_clock) * recover8b[i]);
amd_print_drive("Data Active: ", "%8dns", (1000 / pci_clock) * active[i]);
amd_print_drive("Data Recovery: ", "%8dns", (1000 / pci_clock) * recover[i]);
amd_print_drive("Cycle Time: ", "%8dns", cycle[i]);
amd_print_drive("Transfer Rate: ", "%4d.%dMB/s", speed[i] / 10, speed[i] % 10);

return p - buffer; /* hoping it is less than 4K... */
}

#endif

/*
* amd_set_speed() writes timing values to the chipset registers
*/

static void amd_set_speed(struct pci_dev *dev, unsigned char dn, struct ide_timing *timing)
{
unsigned char t;

pci_read_config_byte(dev, AMD_ADDRESS_SETUP, &t);
t = (t & ~(3 << ((3 - dn) << 1))) | ((FIT(timing->setup, 1, 4) - 1) << ((3 - dn) << 1));
pci_write_config_byte(dev, AMD_ADDRESS_SETUP, t);

pci_write_config_byte(dev, AMD_8BIT_TIMING + (1 - (dn >> 1)),
((FIT(timing->act8b, 1, 16) - 1) << 4) | (FIT(timing->rec8b, 1, 16) - 1));

pci_write_config_byte(dev, AMD_DRIVE_TIMING + (3 - dn),
((FIT(timing->active, 1, 16) - 1) << 4) | (FIT(timing->recover, 1, 16) - 1));

switch(amd_config->flags & AMD_UDMA) {
case AMD_UDMA_33: t = timing->udma ? (0xc0 | (FIT(timing->udma, 2, 5) - 2)) : 0x03; break;
case AMD_UDMA_66: t = timing->udma ? (0xc0 | amd_cyc2udma[FIT(timing->udma, 2, 10)]) : 0x03; break;
case AMD_UDMA_100: t = timing->udma ? (0xc0 | amd_cyc2udma[FIT(timing->udma / 2, 2, 10)]) : 0x03; break;
}

pci_write_config_byte(dev, AMD_UDMA_TIMING + (3 - dn), t);
}

/*
* amd_set_drive() computes timing values configures the drive and
* the chipset to a desired transfer mode. It also can be called
* by upper layers.
*/

static int amd_set_drive(ide_drive_t *drive, unsigned char speed)
{
ide_drive_t *peer = HWIF(drive)->drives + (~drive->dn & 1);
struct ide_timing t, p;
int err, T, UT;

if (speed != XFER_PIO_SLOW && speed != drive->current_speed)
if ((err = ide_config_drive_speed(drive, speed)))
return err;

T = 1000 / system_bus_clock();
UT = T / MAX(amd_config->flags & AMD_UDMA, 1);

ide_timing_compute(drive, speed, &t, T, UT);

if (peer->present) {
ide_timing_compute(peer, peer->current_speed, &p, T, UT);
ide_timing_merge(&p, &t, &t, IDE_TIMING_8BIT);
}

amd_set_speed(HWIF(drive)->pci_dev, drive->dn, &t);

if (!drive->init_speed)
drive->init_speed = speed;
drive->current_speed = speed;

return 0;
}

/*
* amd7409_tune_drive() is a callback from upper layers for
* PIO-only tuning.
*/

static void amd7409_tune_drive(ide_drive_t *drive, unsigned char pio)
{
if (!((amd_enabled >> HWIF(drive)->channel) & 1))
return;

if (pio == 255) {
amd_set_drive(drive, ide_find_best_mode(drive, XFER_PIO | XFER_EPIO));
return;
}

amd_set_drive(drive, XFER_PIO_0 + MIN(pio, 5));
}

#ifdef CONFIG_BLK_DEV_IDEDMA

/*
* amd7409_dmaproc() is a callback from upper layers that can do
* a lot, but we use it for DMA/PIO tuning only, delegating everything
* else to the default ide_dmaproc().
*/

int amd7409_dmaproc(ide_dma_action_t func, ide_drive_t *drive)
{

if (func == ide_dma_check) {

short w80 = eighty_ninty_three(drive);

short speed = ide_find_best_mode(drive,
XFER_PIO | XFER_EPIO | XFER_MWDMA | XFER_UDMA |
((amd_config->flags & AMD_NO_SWDMA) ? 0 : XFER_SWDMA) |
(w80 && (amd_config->flags & AMD_UDMA) == AMD_UDMA_66 ? XFER_UDMA_66 : 0) |
(w80 && (amd_config->flags & AMD_UDMA) == AMD_UDMA_100 ? XFER_UDMA_100 : 0));

func = ((speed & XFER_MODE) != XFER_PIO) ? ide_dma_on : ide_dma_off_quietly;

if (amd_set_drive(drive, speed))
func = ide_dma_off;
}

return ide_dmaproc(func, drive);
}

#endif /* CONFIG_BLK_DEV_IDEDMA */

/*
* The initialization callback. Here we determine the IDE chip type
* and initialize its drive independent registers.
*/

unsigned int __init pci_init_amd7409(struct pci_dev *dev, const char *name)
{
unsigned char t;
unsigned int u;
int i;

/*
* Find out what AMD IDE this is.
*/

for (amd_config = amd_ide_chips; amd_config->id; amd_config++) {
pci_read_config_byte(dev, PCI_REVISION_ID, &t);
if (dev->device == amd_config->id && t >= amd_config->rev)
break;
}

if (!amd_config->id) {
printk(KERN_WARNING "AMD7409: Unknown AMD IDE Chip, contact Vojtech Pavlik <vojtech@suse.cz>\n");
return -ENODEV;
}

/*
* Check UDMA66 mode or cable info set by BIOS.
*/

if ((amd_config->flags & AMD_UDMA) > AMD_UDMA_33) {

if (amd_config->flags & AMD_CABLE) {
pci_read_config_byte(dev, AMD_CABLE_DETECT, &t);
amd_80w = ((u & 0x3) ? 1 : 0) | ((u & 0xc) ? 2 : 0);
} else {
pci_read_config_dword(dev, AMD_UDMA_TIMING, &u);
for (i = 24; i >= 0; i -= 8)
if ((u >> i) & 4)
amd_80w |= (1 << (1 - (i >> 4)));
}
}

pci_read_config_dword(dev, AMD_IDE_ENABLE, &u);
amd_enabled = ((u & 1) ? 2 : 0) | ((u & 2) ? 1 : 0);

/*
* Set up prefetch & postwrite.
*/

pci_read_config_byte(dev, AMD_IDE_CONFIG, &t);
pci_write_config_byte(dev, AMD_IDE_CONFIG, t | 0xf0);

/*
* Print the boot message.
*/

printk(KERN_INFO "AMD7409: AMD-%s IDE %s controller on pci%d:%d.%d\n",
amd_config->name,
(amd_config->flags & AMD_UDMA) == AMD_UDMA_100 ? "UDMA100" :
(amd_config->flags & AMD_UDMA) == AMD_UDMA_66 ? "UDMA66" : "UDMA33",
dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn));

/*
* Register /proc/ide/via entry
*/

#ifdef CONFIG_PROC_FS
if (!amd7409_proc) {
for (i = 0; i < 6; i++)
if (pci_resource_flags(dev, i) & IORESOURCE_IO)
break;

amd_base = pci_resource_start(dev, i);
bmide_dev = dev;
amd7409_display_info = &amd_get_info;
amd7409_proc = 1;

}
#endif

return 0;
}

unsigned int __init ata66_amd7409(ide_hwif_t *hwif)
{
return ((amd_enabled & amd_80w) >> hwif->channel) & 1;
}

void __init ide_init_amd7409(ide_hwif_t *hwif)
{
int i;

hwif->tuneproc = &amd7409_tune_drive;
hwif->speedproc = &amd_set_drive;
hwif->autodma = 0;

for (i = 0; i < 2; i++) {
hwif->drives[i].io_32bit = 1;
hwif->drives[i].unmask = 1;
hwif->drives[i].autotune = 1;
hwif->drives[i].dn = hwif->channel * 2 + i;
}

#ifdef CONFIG_BLK_DEV_IDEDMA
if (hwif->dma_base) {
hwif->dmaproc = &amd7409_dmaproc;
hwif->autodma = 1;
}
#endif /* CONFIG_BLK_DEV_IDEDMA */
}

/*
* We allow the BM-DMA driver only work on enabled interfaces.
*/

void __init ide_dmacapable_amd7409(ide_hwif_t *hwif, unsigned long dmabase)
{
if ((amd_enabled >> hwif->channel) & 1)
ide_setup_dma(hwif, dmabase, 8);
}
#ifndef _IDE_TIMING_H
#define _IDE_TIMING_H

/*
* $Id: ide-timing.h,v 1.4 2000/10/02 20:48:56 vojtech Exp $
*
* Copyright (c) 1999-2000 Vojtech Pavlik
*
* Sponsored by SuSE
*/

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Should you need to contact me, the author, you can do so either by
* e-mail - mail your message to <vojtech@suse.cz>, or by paper mail:
* Vojtech Pavlik, Ucitelska 1576, Prague 8, 182 00 Czech Republic
*/

#include <linux/hdreg.h>

#ifndef XFER_PIO_5
#define XFER_PIO_5 0x0d
#endif

struct ide_timing {
short mode;
short setup; /* t1 */
short act8b; /* t2 for 8-bit io */
short rec8b; /* t2i for 8-bit io */
short cyc8b; /* t0 for 8-bit io */
short active; /* t2 or tD */
short recover; /* t2i or tK */
short cycle; /* t0 */
short udma; /* t2CYCTYP/2 */
};

/*
* PIO 0-5, MWDMA 0-2 and UDMA 0-5 timings (in nanoseconds).
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
* for PIO 5, which is a nonstandard extension.
*/

static struct ide_timing ide_timing[] = {

{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },

{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },

{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },

{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },

{ XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },

{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },

{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },

{ -1 }
};

#define IDE_TIMING_SETUP 0x01
#define IDE_TIMING_ACT8B 0x02
#define IDE_TIMING_REC8B 0x04
#define IDE_TIMING_CYC8B 0x08
#define IDE_TIMING_8BIT 0x0e
#define IDE_TIMING_ACTIVE 0x10
#define IDE_TIMING_RECOVER 0x20
#define IDE_TIMING_CYCLE 0x40
#define IDE_TIMING_UDMA 0x80
#define IDE_TIMING_ALL 0xff

#define MIN(a,b) ((a)<(b)?(a):(b))
#define MAX(a,b) ((a)>(b)?(a):(b))
#define FIT(v,min,max) MAX(MIN(v,max),min)
#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)

#define XFER_MODE 0xf0
#define XFER_UDMA_100 0x44
#define XFER_UDMA_66 0x42
#define XFER_UDMA 0x40
#define XFER_MWDMA 0x20
#define XFER_SWDMA 0x10
#define XFER_EPIO 0x01
#define XFER_PIO 0x00

static short ide_find_best_mode(ide_drive_t *drive, int map)
{
struct hd_driveid *id = drive->id;
short best = 0;

if (!id)
return XFER_PIO_SLOW;

if ((map & XFER_UDMA) && (id->field_valid & 4)) { /* Want UDMA and UDMA bitmap valid */

if ((map & XFER_UDMA_100) == XFER_UDMA_100)
if ((best = (id->dma_ultra & 0x0020) ? XFER_UDMA_5 : 0)) return best;

if ((map & XFER_UDMA_66) == XFER_UDMA_66)
if ((best = (id->dma_ultra & 0x0010) ? XFER_UDMA_4 :
(id->dma_ultra & 0x0008) ? XFER_UDMA_3 : 0)) return best;

if ((best = (id->dma_ultra & 0x0004) ? XFER_UDMA_2 :
(id->dma_ultra & 0x0002) ? XFER_UDMA_1 :
(id->dma_ultra & 0x0001) ? XFER_UDMA_0 : 0)) return best;
}

if ((map & XFER_MWDMA) && (id->field_valid & 2)) { /* Want MWDMA and drive has EIDE fields */

if ((best = (id->dma_mword & 0x0004) ? XFER_MW_DMA_2 :
(id->dma_mword & 0x0002) ? XFER_MW_DMA_1 :
(id->dma_mword & 0x0001) ? XFER_MW_DMA_0 : 0)) return best;
}

if (map & XFER_SWDMA) { /* Want SWDMA */

if (id->field_valid & 2) { /* EIDE SWDMA */

if ((best = (id->dma_1word & 0x0004) ? XFER_SW_DMA_2 :
(id->dma_1word & 0x0002) ? XFER_SW_DMA_1 :
(id->dma_1word & 0x0001) ? XFER_SW_DMA_0 : 0)) return best;
}

if (id->capability & 1) { /* Pre-EIDE style SWDMA */

if ((best = (id->tDMA == 2) ? XFER_SW_DMA_2 :
(id->tDMA == 1) ? XFER_SW_DMA_1 :
(id->tDMA == 0) ? XFER_SW_DMA_0 : 0)) return best;
}
}


if ((map & XFER_EPIO) && (id->field_valid & 2)) { /* EIDE PIO modes */

if ((best = (drive->id->eide_pio_modes & 4) ? XFER_PIO_5 :
(drive->id->eide_pio_modes & 2) ? XFER_PIO_4 :
(drive->id->eide_pio_modes & 1) ? XFER_PIO_3 : 0)) return best;
}

return (drive->id->tPIO == 2) ? XFER_PIO_2 :
(drive->id->tPIO == 1) ? XFER_PIO_1 :
(drive->id->tPIO == 0) ? XFER_PIO_0 : XFER_PIO_SLOW;
}

static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT)
{
q->setup = EZ(t->setup, T);
q->act8b = EZ(t->act8b, T);
q->rec8b = EZ(t->rec8b, T);
q->cyc8b = EZ(t->cyc8b, T);
q->active = EZ(t->active, T);
q->recover = EZ(t->recover, T);
q->cycle = EZ(t->cycle, T);
q->udma = EZ(t->udma, UT);
}

static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what)
{
if (what & IDE_TIMING_SETUP ) m->setup = MAX(a->setup, b->setup);
if (what & IDE_TIMING_ACT8B ) m->act8b = MAX(a->act8b, b->act8b);
if (what & IDE_TIMING_REC8B ) m->rec8b = MAX(a->rec8b, b->rec8b);
if (what & IDE_TIMING_CYC8B ) m->cyc8b = MAX(a->cyc8b, b->cyc8b);
if (what & IDE_TIMING_ACTIVE ) m->active = MAX(a->active, b->active);
if (what & IDE_TIMING_RECOVER) m->recover = MAX(a->recover, b->recover);
if (what & IDE_TIMING_CYCLE ) m->cycle = MAX(a->cycle, b->cycle);
if (what & IDE_TIMING_UDMA ) m->udma = MAX(a->udma, b->udma);
}

static struct ide_timing* ide_timing_find_mode(short speed)
{
struct ide_timing *t;

for (t = ide_timing; t->mode != speed; t++)
if (t->mode < 0)
return NULL;
return t;
}

static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT)
{
struct hd_driveid *id = drive->id;
struct ide_timing *s, p;

/*
* Find the mode.
*/

if (!(s = ide_timing_find_mode(speed)))
return -EINVAL;

/*
* If the drive is an EIDE drive, it can tell us it needs extended
* PIO/MWDMA cycle timing.
*/

if (id && id->field_valid & 2) { /* EIDE drive */

memset(&p, 0, sizeof(p));

switch (speed & XFER_MODE) {

case XFER_PIO:
if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio;
else p.cycle = p.cyc8b = id->eide_pio_iordy;
break;

case XFER_MWDMA:
p.cycle = id->eide_dma_min;
break;
}

ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
}

/*
* Convert the timing to bus clock counts.
*/

ide_timing_quantize(s, t, T, UT);

/*
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
* and some other commands. We have to ensure that the DMA cycle timing is
* slower/equal than the fastest PIO timing.
*/

if ((speed & XFER_MODE) != XFER_PIO) {
ide_timing_compute(drive, ide_find_best_mode(drive, XFER_PIO | XFER_EPIO), &p, T, UT);
ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
}

/*
* Lenghten active & recovery time so that cycle time is correct.
*/

if (t->act8b + t->rec8b < t->cyc8b) {
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
t->rec8b = t->cyc8b - t->act8b;
}

if (t->active + t->recover < t->cycle) {
t->active += (t->cycle - (t->active + t->recover)) / 2;
t->recover = t->cycle - t->active;
}

return 0;
}

#endif
\
 
 \ /
  Last update: 2005-03-22 13:28    [W:0.062 / U:0.180 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site