lkml.org 
[lkml]   [2016]   [Feb]   [19]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
SubjectRe: [PATCH 1/1] intel_pstate: Increase hold-off time before busyness is scaled
From
Date
The issue you are reporting looks like one we improved on android by using 
the average pstate instead of using the last requested pstate

We know that this is improving the ffmpeg encoding performance when using the
load algorithm.

see patch attached

This patch is only applied on get_target_pstate_use_cpu_load however you can give
it a try on get_target_pstate_use_performance

IPLoad+Avg-Pstate vs IP Load:

Benchmark ∆Perf ∆Power
SmartBench-Gaming -0.1% -10.4%
SmartBench-Productivity -0.8% -10.4%
CandyCrush n/a -17.4%
AngryBirds n/a -5.9%
videoPlayback n/a -13.9%
audioPlayback n/a -4.9%
IcyRocks-0-0 0.0% -4.0%
IcyRocks-20-50 0.0% -38.4%
IcyRocks-40-100 0.1% -2.8%
IcyRocks-60-150 1.4% -0.6%
IcyRocks-80-200 2.9% 0.7%
IcyRocks-100-250 1.1% 0.4%
iozone RR -2.7% -4.2%
iozone RW -8.8% -4.2%
Drystone -0.2% -0.8%
Coremark 0.5% 0.2%


Signed-off-by: Philippe Longepe <philippe.longepe@linux.intel.com>
---
drivers/cpufreq/intel_pstate.c | 11 ++++++++---
1 file changed, 8 insertions(+), 3 deletions(-)

diff --git a/drivers/cpufreq/intel_pstate.c b/drivers/cpufreq/intel_pstate.c
index cd83d47..6ba8cab 100644
--- a/drivers/cpufreq/intel_pstate.c
+++ b/drivers/cpufreq/intel_pstate.c
@@ -908,8 +908,6 @@ static inline void intel_pstate_sample(struct cpudata *cpu)
cpu->sample.mperf -= cpu->prev_mperf;
cpu->sample.tsc -= cpu->prev_tsc;

- intel_pstate_calc_busy(cpu);
-
cpu->prev_aperf = aperf;
cpu->prev_mperf = mperf;
cpu->prev_tsc = tsc;
@@ -931,6 +929,12 @@ static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
mod_timer_pinned(&cpu->timer, jiffies + delay);
}

+static inline int32_t get_avg_pstate(struct cpudata *cpu)
+{
+ return div64_u64(cpu->pstate.max_pstate * cpu->sample.aperf,
+ cpu->sample.mperf);
+}
+
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
@@ -964,7 +968,7 @@ static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
cpu->sample.busy_scaled = cpu_load;

- return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
+ return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
}

static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
@@ -973,6 +977,7 @@ static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
s64 duration_us;
u32 sample_time;

+ intel_pstate_calc_busy(cpu);
/*
* core_busy is the ratio of actual performance to max
* max_pstate is the max non turbo pstate available

Steph




> On Feb 18, 2016, at 12:11 PM, Mel Gorman <mgorman@techsingularity.net> wrote:
>
> (cc'ing pm and scheduler people as the problem could be blamed on either
> subsystem depending on your point of view)
>
> The PID relies on samples of equal time but this does not apply for
> deferrable timers when the CPU is idle. intel_pstate checks if the actual
> duration between samples is large and if so, the "busyness" of the CPU
> is scaled.
>
> This assumes the delay was a deferred timer but a workload may simply have
> been idle for a short time if it's context switching between a server and
> client or waiting very briefly on IO. It's compounded by the problem that
> server/clients migrate between CPUs due to wake-affine trying to maximise
> hot cache usage. In such cases, the cores are not considered busy and the
> frequency is dropped prematurely.
>
> This patch increases the hold-off value before the busyness is scaled. It
> was selected based simply on testing until the desired result was found.
> Tests were conducted with workloads that are either client/server based
> or short-lived IO.
>
> dbench4
> 4.5.0-rc2 4.5.0-rc2
> vanilla sample-v1r1
> Hmean mb/sec-1 309.82 ( 0.00%) 327.01 ( 5.55%)
> Hmean mb/sec-2 594.92 ( 0.00%) 613.02 ( 3.04%)
> Hmean mb/sec-4 669.17 ( 0.00%) 712.27 ( 6.44%)
> Hmean mb/sec-8 700.82 ( 0.00%) 724.04 ( 3.31%)
> Hmean mb/sec-64 425.38 ( 0.00%) 448.02 ( 5.32%)
>
> 4.5.0-rc2 4.5.0-rc2
> vanilla sample-v1r1
> Mean %Busy 27.28 26.81
> Mean CPU%c1 42.50 44.29
> Mean CPU%c3 7.16 7.14
> Mean CPU%c6 23.05 21.76
> Mean CPU%c7 0.00 0.00
> Mean CorWatt 4.60 5.08
> Mean PkgWatt 6.83 7.32
>
> There is fairly sizable performance boost from the modification and while
> the percentage of time spent in C1 is increased, it is not by a substantial
> amount and the power usage increase is tiny.
>
> iozone for small files and varying block sizes. Format is IOOperation-filessize-recordsize
>
> 4.5.0-rc2 4.5.0-rc2
> vanilla sample-v1r1
> Hmean SeqWrite-200704-1 740152.30 ( 0.00%) 748432.35 ( 1.12%)
> Hmean SeqWrite-200704-2 1052506.25 ( 0.00%) 1169065.30 ( 11.07%)
> Hmean SeqWrite-200704-4 1450716.41 ( 0.00%) 1725335.69 ( 18.93%)
> Hmean SeqWrite-200704-8 1523917.72 ( 0.00%) 1881610.25 ( 23.47%)
> Hmean SeqWrite-200704-16 1572519.89 ( 0.00%) 1750277.07 ( 11.30%)
> Hmean SeqWrite-200704-32 1611078.69 ( 0.00%) 1923796.62 ( 19.41%)
> Hmean SeqWrite-200704-64 1656755.37 ( 0.00%) 1892766.99 ( 14.25%)
> Hmean SeqWrite-200704-128 1641739.24 ( 0.00%) 1952081.27 ( 18.90%)
> Hmean SeqWrite-200704-256 1660046.05 ( 0.00%) 1931237.50 ( 16.34%)
> Hmean SeqWrite-200704-512 1634394.86 ( 0.00%) 1860369.95 ( 13.83%)
> Hmean SeqWrite-200704-1024 1629526.38 ( 0.00%) 1810320.92 ( 11.09%)
> Hmean SeqWrite-401408-1 828943.43 ( 0.00%) 876152.50 ( 5.70%)
> Hmean SeqWrite-401408-2 1231519.20 ( 0.00%) 1368986.18 ( 11.16%)
> Hmean SeqWrite-401408-4 1724109.56 ( 0.00%) 1838265.22 ( 6.62%)
> Hmean SeqWrite-401408-8 1806615.84 ( 0.00%) 1969611.74 ( 9.02%)
> Hmean SeqWrite-401408-16 1859268.96 ( 0.00%) 2003005.51 ( 7.73%)
> Hmean SeqWrite-401408-32 1887759.67 ( 0.00%) 2415913.37 ( 27.98%)
> Hmean SeqWrite-401408-64 1941717.11 ( 0.00%) 1971929.24 ( 1.56%)
> Hmean SeqWrite-401408-128 1919515.58 ( 0.00%) 2127647.53 ( 10.84%)
> Hmean SeqWrite-401408-256 1908766.57 ( 0.00%) 2067473.02 ( 8.31%)
> Hmean SeqWrite-401408-512 1908999.37 ( 0.00%) 2195587.56 ( 15.01%)
> Hmean SeqWrite-401408-1024 1912232.98 ( 0.00%) 2150068.56 ( 12.44%)
> Hmean Rewrite-200704-1 1151067.57 ( 0.00%) 1155309.64 ( 0.37%)
> Hmean Rewrite-200704-2 1786824.53 ( 0.00%) 1837093.18 ( 2.81%)
> Hmean Rewrite-200704-4 2539338.19 ( 0.00%) 2649019.78 ( 4.32%)
> Hmean Rewrite-200704-8 2687411.53 ( 0.00%) 2785202.26 ( 3.64%)
> Hmean Rewrite-200704-16 2709445.97 ( 0.00%) 2805580.76 ( 3.55%)
> Hmean Rewrite-200704-32 2735718.43 ( 0.00%) 2807532.87 ( 2.63%)
> Hmean Rewrite-200704-64 2782754.97 ( 0.00%) 2952024.38 ( 6.08%)
> Hmean Rewrite-200704-128 2791889.73 ( 0.00%) 2805048.02 ( 0.47%)
> Hmean Rewrite-200704-256 2711596.34 ( 0.00%) 2828896.54 ( 4.33%)
> Hmean Rewrite-200704-512 2665066.25 ( 0.00%) 2868058.05 ( 7.62%)
> Hmean Rewrite-200704-1024 2675375.89 ( 0.00%) 2685664.19 ( 0.38%)
> Hmean Rewrite-401408-1 1350713.78 ( 0.00%) 1358762.21 ( 0.60%)
> Hmean Rewrite-401408-2 2079420.61 ( 0.00%) 2097399.02 ( 0.86%)
> Hmean Rewrite-401408-4 2889535.90 ( 0.00%) 2912795.03 ( 0.80%)
> Hmean Rewrite-401408-8 3068155.32 ( 0.00%) 3090915.84 ( 0.74%)
> Hmean Rewrite-401408-16 3103789.43 ( 0.00%) 3162486.65 ( 1.89%)
> Hmean Rewrite-401408-32 3112447.72 ( 0.00%) 3243067.63 ( 4.20%)
> Hmean Rewrite-401408-64 3232651.39 ( 0.00%) 3227701.02 ( -0.15%)
> Hmean Rewrite-401408-128 3149556.47 ( 0.00%) 3165694.24 ( 0.51%)
> Hmean Rewrite-401408-256 3093348.93 ( 0.00%) 3104229.97 ( 0.35%)
> Hmean Rewrite-401408-512 3026305.45 ( 0.00%) 3121151.02 ( 3.13%)
> Hmean Rewrite-401408-1024 3005431.18 ( 0.00%) 3046910.32 ( 1.38%)
>
> 4.5.0-rc2 4.5.0-rc2
> vanilla sample-v1r1
> Mean %Busy 3.10 3.09
> Mean CPU%c1 6.16 5.55
> Mean CPU%c3 0.08 0.10
> Mean CPU%c6 90.65 91.26
> Mean CPU%c7 0.00 0.00
> Mean CorWatt 1.71 1.74
> Mean PkgWatt 3.88 3.91
> Max %Busy 16.51 16.22
> Max CPU%c1 17.03 21.99
> Max CPU%c3 2.57 2.15
> Max CPU%c6 96.39 96.31
> Max CPU%c7 0.00 0.00
> Max CorWatt 5.40 5.42
> Max PkgWatt 7.53 7.56
>
> The other operations are omitted as they showed no performance difference.
> For sequential writes and rewrites there is a massive gain in throughput
> for very small files. The increase in power consumption is negligible.
> It is known that the increase is not universal. Larger core machines see
> a much smaller benefit so the rate of CPU migrations are a factor.
>
> netperf-UDP_STREAM
>
> 4.5.0-rc2 4.5.0-rc2
> vanilla sample-v1r1
> Hmean send-64 233.96 ( 0.00%) 244.76 ( 4.61%)
> Hmean send-128 466.74 ( 0.00%) 479.16 ( 2.66%)
> Hmean send-256 929.12 ( 0.00%) 964.00 ( 3.75%)
> Hmean send-1024 3631.36 ( 0.00%) 3781.89 ( 4.15%)
> Hmean send-2048 6984.60 ( 0.00%) 7169.60 ( 2.65%)
> Hmean send-3312 10792.94 ( 0.00%) 11103.42 ( 2.88%)
> Hmean send-4096 12895.57 ( 0.00%) 13112.58 ( 1.68%)
> Hmean send-8192 23057.34 ( 0.00%) 23443.80 ( 1.68%)
> Hmean send-16384 37871.11 ( 0.00%) 38292.60 ( 1.11%)
> Hmean recv-64 233.89 ( 0.00%) 244.71 ( 4.63%)
> Hmean recv-128 466.63 ( 0.00%) 479.09 ( 2.67%)
> Hmean recv-256 928.88 ( 0.00%) 963.74 ( 3.75%)
> Hmean recv-1024 3630.54 ( 0.00%) 3780.96 ( 4.14%)
> Hmean recv-2048 6983.20 ( 0.00%) 7167.55 ( 2.64%)
> Hmean recv-3312 10790.92 ( 0.00%) 11100.63 ( 2.87%)
> Hmean recv-4096 12891.37 ( 0.00%) 13110.35 ( 1.70%)
> Hmean recv-8192 23054.79 ( 0.00%) 23438.27 ( 1.66%)
> Hmean recv-16384 37866.79 ( 0.00%) 38283.73 ( 1.10%)
>
> 4.5.0-rc2 4.5.0-rc2
> vanilla sample-v1r1
> Mean %Busy 37.30 37.10
> Mean CPU%c1 37.52 37.30
> Mean CPU%c3 0.10 0.10
> Mean CPU%c6 25.08 25.49
> Mean CPU%c7 0.00 0.00
> Mean CorWatt 11.20 11.18
> Mean PkgWatt 13.30 13.28
> Max %Busy 50.64 51.73
> Max CPU%c1 49.80 50.53
> Max CPU%c3 9.14 8.95
> Max CPU%c6 62.46 63.48
> Max CPU%c7 0.00 0.00
> Max CorWatt 16.46 16.44
> Max PkgWatt 18.58 18.55
>
> In this test, the client/server are pinned to cores so the scheduler
> decisions are not a factor. There is still a mild performance boost
> with no impact on power consumption.
>
> cyclictest-pinned
> 4.5.0-rc2 4.5.0-rc2
> vanilla sample-v1r1
> Amean LatAvg 3.00 ( 0.00%) 2.64 ( 11.94%)
> Amean LatMax 156.93 ( 0.00%) 106.89 ( 31.89%)
>
> 4.5.0-rc2 4.5.0-rc2
> vanilla sample-v1r1
> Mean %Busy 99.74 99.73
> Mean CPU%c1 0.02 0.02
> Mean CPU%c3 0.00 0.01
> Mean CPU%c6 0.23 0.24
> Mean CPU%c7 0.00 0.00
> Mean CorWatt 5.06 5.92
> Mean PkgWatt 7.12 7.99
> Max %Busy 100.00 100.00
> Max CPU%c1 3.88 3.50
> Max CPU%c3 0.71 0.99
> Max CPU%c6 41.79 43.17
> Max CPU%c7 0.00 0.00
> Max CorWatt 6.80 8.66
> Max PkgWatt 8.85 10.71
>
> This test measures how quickly a task wakes up after a timeout. The test
> could be defeated by selecting a different timeout value that is outside
> the new hold-off value. Furthermore, a workload that is very sensitive to
> wakeup latencies should use the performance governor. Nevertheless it's
> interesting to note the impact of increasing the hold-off value. There is
> an increase in power usage because the CPU remains active during sleep times.
>
> In all cases, there are some CPU migrations because wakers pull wakees to
> nearby CPUs. It could be argued that the workload should be pinned but this
> puts a burden on the user that may not even be possible in all cases. The
> scheduler could try keeping processes on the same CPUs but that would impact
> cache hotness and cause a different class of issues. It is inevitable that
> there will be some conflict between power management and scheduling decisions
> but there is some gains from delaying idling slightly without a severe impact
> on power consumption.
>
> Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
> ---
> drivers/cpufreq/intel_pstate.c | 2 +-
> 1 file changed, 1 insertion(+), 1 deletion(-)
>
> diff --git a/drivers/cpufreq/intel_pstate.c b/drivers/cpufreq/intel_pstate.c
> index cd83d477e32d..54250084174a 100644
> --- a/drivers/cpufreq/intel_pstate.c
> +++ b/drivers/cpufreq/intel_pstate.c
> @@ -999,7 +999,7 @@ static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
> sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
> duration_us = ktime_us_delta(cpu->sample.time,
> cpu->last_sample_time);
> - if (duration_us > sample_time * 3) {
> + if (duration_us > sample_time * 12) {
> sample_ratio = div_fp(int_tofp(sample_time),
> int_tofp(duration_us));
> core_busy = mul_fp(core_busy, sample_ratio);
> --
> 2.6.4
>
> --
> To unsubscribe from this list: send the line "unsubscribe linux-pm" in
> the body of a message to majordomo@vger.kernel.org
> More majordomo info at http://vger.kernel.org/majordomo-info.html


[unhandled content-type:application/octet-stream]
\
 
 \ /
  Last update: 2016-02-19 12:21    [W:1.632 / U:0.148 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site