lkml.org 
[lkml]   [2015]   [Sep]   [29]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
From
Subject[PATCH 3.14 81/84] x86/nmi/64: Reorder nested NMI checks
Date
3.14-stable review patch.  If anyone has any objections, please let me know.

------------------

From: Andy Lutomirski <luto@kernel.org>

commit a27507ca2d796cfa8d907de31ad730359c8a6d06 upstream.

Check the repeat_nmi .. end_repeat_nmi special case first. The
next patch will rework the RSP check and, as a side effect, the
RSP check will no longer detect repeat_nmi .. end_repeat_nmi, so
we'll need this ordering of the checks.

Note: this is more subtle than it appears. The check for
repeat_nmi .. end_repeat_nmi jumps straight out of the NMI code
instead of adjusting the "iret" frame to force a repeat. This
is necessary, because the code between repeat_nmi and
end_repeat_nmi sets "NMI executing" and then writes to the
"iret" frame itself. If a nested NMI comes in and modifies the
"iret" frame while repeat_nmi is also modifying it, we'll end up
with garbage. The old code got this right, as does the new
code, but the new code is a bit more explicit.

If we were to move the check right after the "NMI executing"
check, then we'd get it wrong and have random crashes.

( Because the "NMI executing" check would jump to the code that would
modify the "iret" frame without checking if the interrupted NMI was
currently modifying it. )

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>

---
arch/x86/kernel/entry_64.S | 33 +++++++++++++++++----------------
1 file changed, 17 insertions(+), 16 deletions(-)

--- a/arch/x86/kernel/entry_64.S
+++ b/arch/x86/kernel/entry_64.S
@@ -1842,7 +1842,23 @@ ENTRY(nmi)
/*
* Determine whether we're a nested NMI.
*
- * First check "NMI executing". If it's set, then we're nested.
+ * If we interrupted kernel code between repeat_nmi and
+ * end_repeat_nmi, then we are a nested NMI. We must not
+ * modify the "iret" frame because it's being written by
+ * the outer NMI. That's okay; the outer NMI handler is
+ * about to about to call do_nmi anyway, so we can just
+ * resume the outer NMI.
+ */
+ movq $repeat_nmi, %rdx
+ cmpq 8(%rsp), %rdx
+ ja 1f
+ movq $end_repeat_nmi, %rdx
+ cmpq 8(%rsp), %rdx
+ ja nested_nmi_out
+1:
+
+ /*
+ * Now check "NMI executing". If it's set, then we're nested.
* This will not detect if we interrupted an outer NMI just
* before IRET.
*/
@@ -1860,21 +1876,6 @@ ENTRY(nmi)

nested_nmi:
/*
- * If we interrupted an NMI that is between repeat_nmi and
- * end_repeat_nmi, then we must not modify the "iret" frame
- * because it's being written by the outer NMI. That's okay;
- * the outer NMI handler is about to call do_nmi anyway,
- * so we can just resume the outer NMI.
- */
- movq $repeat_nmi, %rdx
- cmpq 8(%rsp), %rdx
- ja 1f
- movq $end_repeat_nmi, %rdx
- cmpq 8(%rsp), %rdx
- ja nested_nmi_out
-
-1:
- /*
* Modify the "iret" frame to point to repeat_nmi, forcing another
* iteration of NMI handling.
*/



\
 
 \ /
  Last update: 2015-09-29 17:41    [W:0.461 / U:0.020 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site