lkml.org 
[lkml]   [2012]   [Jul]   [19]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
From
Subject[RESEND PATCH RFC V3 0/3] kvm: Improving directed yield in PLE handler
From: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>

Currently, on a large vcpu guests, there is a high probability of
yielding to the same vcpu who had recently done a pause-loop exit or
cpu relax intercepted. Such a yield can lead to the vcpu spinning
again and hence degrade the performance.

The patchset keeps track of the pause loop exit/cpu relax interception
and gives chance to a vcpu which:
(a) Has not done pause loop exit or cpu relax intercepted at all
(probably he is preempted lock-holder)
(b) Was skipped in last iteration because it did pause loop exit or
cpu relax intercepted, and probably has become eligible now
(next eligible lock holder)

Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
---
V2 was:
Reviewed-by: Rik van Riel <riel@redhat.com>

Changelog: Added comment on locking as suggested by Avi

include/linux/kvm_host.h | 5 +++++
virt/kvm/kvm_main.c | 42 ++++++++++++++++++++++++++++++++++++++++++
2 files changed, 47 insertions(+), 0 deletions(-)

diff --git a/include/linux/kvm_host.h b/include/linux/kvm_host.h
index 34ce296..952427d 100644
--- a/include/linux/kvm_host.h
+++ b/include/linux/kvm_host.h
@@ -923,6 +923,11 @@ static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
{
}

+static inline bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
+{
+ return true;
+}
+
#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
#endif

diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c
index 3d6ffc8..8fda756 100644
--- a/virt/kvm/kvm_main.c
+++ b/virt/kvm/kvm_main.c
@@ -1571,6 +1571,43 @@ bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
}
EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);

+#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
+/*
+ * Helper that checks whether a VCPU is eligible for directed yield.
+ * Most eligible candidate to yield is decided by following heuristics:
+ *
+ * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
+ * (preempted lock holder), indicated by @in_spin_loop.
+ * Set at the beiginning and cleared at the end of interception/PLE handler.
+ *
+ * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
+ * chance last time (mostly it has become eligible now since we have probably
+ * yielded to lockholder in last iteration. This is done by toggling
+ * @dy_eligible each time a VCPU checked for eligibility.)
+ *
+ * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
+ * to preempted lock-holder could result in wrong VCPU selection and CPU
+ * burning. Giving priority for a potential lock-holder increases lock
+ * progress.
+ *
+ * Since algorithm is based on heuristics, accessing another VCPU data without
+ * locking does not harm. It may result in trying to yield to same VCPU, fail
+ * and continue with next VCPU and so on.
+ */
+bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
+{
+ bool eligible;
+
+ eligible = !vcpu->spin_loop.in_spin_loop ||
+ (vcpu->spin_loop.in_spin_loop &&
+ vcpu->spin_loop.dy_eligible);
+
+ if (vcpu->spin_loop.in_spin_loop)
+ kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
+
+ return eligible;
+}
+#endif
void kvm_vcpu_on_spin(struct kvm_vcpu *me)
{
struct kvm *kvm = me->kvm;
@@ -1599,6 +1636,8 @@ void kvm_vcpu_on_spin(struct kvm_vcpu *me)
continue;
if (waitqueue_active(&vcpu->wq))
continue;
+ if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
+ continue;
if (kvm_vcpu_yield_to(vcpu)) {
kvm->last_boosted_vcpu = i;
yielded = 1;
@@ -1607,6 +1646,9 @@ void kvm_vcpu_on_spin(struct kvm_vcpu *me)
}
}
kvm_vcpu_set_in_spin_loop(me, false);
+
+ /* Ensure vcpu is not eligible during next spinloop */
+ kvm_vcpu_set_dy_eligible(me, false);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);



\
 
 \ /
  Last update: 2012-07-19 11:41    [W:0.335 / U:0.056 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site