lkml.org 
[lkml]   [2008]   [Jul]   [24]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
Patch in this message
/
Date
From
Subject[PATCH 06/30] mm: kmem_alloc_estimate()
Provide a method to get the upper bound on the pages needed to allocate
a given number of objects from a given kmem_cache.

This lays the foundation for a generic reserve framework as presented in
a later patch in this series. This framework needs to convert object demand
(kmalloc() bytes, kmem_cache_alloc() objects) to pages.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
---
include/linux/slab.h | 4 ++
mm/slab.c | 75 +++++++++++++++++++++++++++++++++++++++++++
mm/slub.c | 87 +++++++++++++++++++++++++++++++++++++++++++++++++++
3 files changed, 166 insertions(+)

Index: linux-2.6/include/linux/slab.h
===================================================================
--- linux-2.6.orig/include/linux/slab.h
+++ linux-2.6/include/linux/slab.h
@@ -65,6 +65,8 @@ void kmem_cache_free(struct kmem_cache *
unsigned int kmem_cache_size(struct kmem_cache *);
const char *kmem_cache_name(struct kmem_cache *);
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
+unsigned kmem_alloc_estimate(struct kmem_cache *cachep,
+ gfp_t flags, int objects);

/*
* Please use this macro to create slab caches. Simply specify the
@@ -99,6 +101,8 @@ int kmem_ptr_validate(struct kmem_cache
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
size_t ksize(const void *);
+unsigned kmalloc_estimate_fixed(size_t, gfp_t, int);
+unsigned kmalloc_estimate_variable(gfp_t, size_t);

/*
* Allocator specific definitions. These are mainly used to establish optimized
Index: linux-2.6/mm/slub.c
===================================================================
--- linux-2.6.orig/mm/slub.c
+++ linux-2.6/mm/slub.c
@@ -2412,6 +2412,42 @@ const char *kmem_cache_name(struct kmem_
}
EXPORT_SYMBOL(kmem_cache_name);

+/*
+ * Calculate the upper bound of pages required to sequentially allocate
+ * @objects objects from @cachep.
+ *
+ * We should use s->min_objects because those are the least efficient.
+ */
+unsigned kmem_alloc_estimate(struct kmem_cache *s, gfp_t flags, int objects)
+{
+ unsigned long pages;
+ struct kmem_cache_order_objects x;
+
+ if (WARN_ON(!s) || WARN_ON(!oo_objects(s->min)))
+ return 0;
+
+ x = s->min;
+ pages = DIV_ROUND_UP(objects, oo_objects(x)) << oo_order(x);
+
+ /*
+ * Account the possible additional overhead if the slab holds more that
+ * one object. Use s->max_objects because that's the worst case.
+ */
+ x = s->oo;
+ if (oo_objects(x) > 1) {
+ /*
+ * Account the possible additional overhead if per cpu slabs
+ * are currently empty and have to be allocated. This is very
+ * unlikely but a possible scenario immediately after
+ * kmem_cache_shrink.
+ */
+ pages += num_online_cpus() << oo_order(x);
+ }
+
+ return pages;
+}
+EXPORT_SYMBOL_GPL(kmem_alloc_estimate);
+
static void list_slab_objects(struct kmem_cache *s, struct page *page,
const char *text)
{
@@ -2789,6 +2825,57 @@ void kfree(const void *x)
EXPORT_SYMBOL(kfree);

/*
+ * Calculate the upper bound of pages required to sequentially allocate
+ * @count objects of @size bytes from kmalloc given @flags.
+ */
+unsigned kmalloc_estimate_fixed(size_t size, gfp_t flags, int count)
+{
+ struct kmem_cache *s = get_slab(size, flags);
+ if (!s)
+ return 0;
+
+ return kmem_alloc_estimate(s, flags, count);
+
+}
+EXPORT_SYMBOL_GPL(kmalloc_estimate_fixed);
+
+/*
+ * Calculate the upper bound of pages requires to sequentially allocate @bytes
+ * from kmalloc in an unspecified number of allocations of nonuniform size.
+ */
+unsigned kmalloc_estimate_variable(gfp_t flags, size_t bytes)
+{
+ int i;
+ unsigned long pages;
+
+ /*
+ * multiply by two, in order to account the worst case slack space
+ * due to the power-of-two allocation sizes.
+ */
+ pages = DIV_ROUND_UP(2 * bytes, PAGE_SIZE);
+
+ /*
+ * add the kmem_cache overhead of each possible kmalloc cache
+ */
+ for (i = 1; i < PAGE_SHIFT; i++) {
+ struct kmem_cache *s;
+
+#ifdef CONFIG_ZONE_DMA
+ if (unlikely(flags & SLUB_DMA))
+ s = dma_kmalloc_cache(i, flags);
+ else
+#endif
+ s = &kmalloc_caches[i];
+
+ if (s)
+ pages += kmem_alloc_estimate(s, flags, 0);
+ }
+
+ return pages;
+}
+EXPORT_SYMBOL_GPL(kmalloc_estimate_variable);
+
+/*
* kmem_cache_shrink removes empty slabs from the partial lists and sorts
* the remaining slabs by the number of items in use. The slabs with the
* most items in use come first. New allocations will then fill those up
Index: linux-2.6/mm/slab.c
===================================================================
--- linux-2.6.orig/mm/slab.c
+++ linux-2.6/mm/slab.c
@@ -3854,6 +3854,81 @@ const char *kmem_cache_name(struct kmem_
EXPORT_SYMBOL_GPL(kmem_cache_name);

/*
+ * Calculate the upper bound of pages required to sequentially allocate
+ * @objects objects from @cachep.
+ */
+unsigned kmem_alloc_estimate(struct kmem_cache *cachep,
+ gfp_t flags, int objects)
+{
+ /*
+ * (1) memory for objects,
+ */
+ unsigned nr_slabs = DIV_ROUND_UP(objects, cachep->num);
+ unsigned nr_pages = nr_slabs << cachep->gfporder;
+
+ /*
+ * (2) memory for each per-cpu queue (nr_cpu_ids),
+ * (3) memory for each per-node alien queues (nr_cpu_ids), and
+ * (4) some amount of memory for the slab management structures
+ *
+ * XXX: truely account these
+ */
+ nr_pages += 1 + ilog2(nr_pages);
+
+ return nr_pages;
+}
+
+/*
+ * Calculate the upper bound of pages required to sequentially allocate
+ * @count objects of @size bytes from kmalloc given @flags.
+ */
+unsigned kmalloc_estimate_fixed(size_t size, gfp_t flags, int count)
+{
+ struct kmem_cache *s = kmem_find_general_cachep(size, flags);
+ if (!s)
+ return 0;
+
+ return kmem_alloc_estimate(s, flags, count);
+}
+EXPORT_SYMBOL_GPL(kmalloc_estimate_fixed);
+
+/*
+ * Calculate the upper bound of pages requires to sequentially allocate @bytes
+ * from kmalloc in an unspecified number of allocations of nonuniform size.
+ */
+unsigned kmalloc_estimate_variable(gfp_t flags, size_t bytes)
+{
+ unsigned long pages;
+ struct cache_sizes *csizep = malloc_sizes;
+
+ /*
+ * multiply by two, in order to account the worst case slack space
+ * due to the power-of-two allocation sizes.
+ */
+ pages = DIV_ROUND_UP(2 * bytes, PAGE_SIZE);
+
+ /*
+ * add the kmem_cache overhead of each possible kmalloc cache
+ */
+ for (csizep = malloc_sizes; csizep->cs_cachep; csizep++) {
+ struct kmem_cache *s;
+
+#ifdef CONFIG_ZONE_DMA
+ if (unlikely(flags & __GFP_DMA))
+ s = csizep->cs_dmacachep;
+ else
+#endif
+ s = csizep->cs_cachep;
+
+ if (s)
+ pages += kmem_alloc_estimate(s, flags, 0);
+ }
+
+ return pages;
+}
+EXPORT_SYMBOL_GPL(kmalloc_estimate_variable);
+
+/*
* This initializes kmem_list3 or resizes various caches for all nodes.
*/
static int alloc_kmemlist(struct kmem_cache *cachep)
--



\
 
 \ /
  Last update: 2008-07-24 16:47    [W:0.991 / U:1.076 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site