lkml.org 
[lkml]   [2006]   [Feb]   [1]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
    Patch in this message
    /
    Date
    From
    Subject[patch 26/44] m32r: use generic bitops
    - remove __{,test_and_}{set,clear,change}_bit() and test_bit()
    - remove ffz()
    - remove find_{next,first}{,_zero}_bit()
    - remove __ffs()
    - remove generic_fls()
    - remove generic_fls64()
    - remove sched_find_first_bit()
    - remove generic_ffs()
    - remove generic_hweight{32,16,8}()
    - remove ext2_{set,clear,test,find_first_zero,find_next_zero}_bit()
    - remove ext2_{set,clear}_bit_atomic()
    - remove minix_{test,set,test_and_clear,test,find_first_zero}_bit()

    Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
    include/asm-m32r/bitops.h | 457 +---------------------------------------------
    1 files changed, 12 insertions(+), 445 deletions(-)

    Index: 2.6-git/include/asm-m32r/bitops.h
    ===================================================================
    --- 2.6-git.orig/include/asm-m32r/bitops.h
    +++ 2.6-git/include/asm-m32r/bitops.h
    @@ -63,25 +63,6 @@ static __inline__ void set_bit(int nr, v
    }

    /**
    - * __set_bit - Set a bit in memory
    - * @nr: the bit to set
    - * @addr: the address to start counting from
    - *
    - * Unlike set_bit(), this function is non-atomic and may be reordered.
    - * If it's called on the same region of memory simultaneously, the effect
    - * may be that only one operation succeeds.
    - */
    -static __inline__ void __set_bit(int nr, volatile void * addr)
    -{
    - __u32 mask;
    - volatile __u32 *a = addr;
    -
    - a += (nr >> 5);
    - mask = (1 << (nr & 0x1F));
    - *a |= mask;
    -}
    -
    -/**
    * clear_bit - Clears a bit in memory
    * @nr: Bit to clear
    * @addr: Address to start counting from
    @@ -118,39 +99,10 @@ static __inline__ void clear_bit(int nr,
    local_irq_restore(flags);
    }

    -static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
    -{
    - unsigned long mask;
    - volatile unsigned long *a = addr;
    -
    - a += (nr >> 5);
    - mask = (1 << (nr & 0x1F));
    - *a &= ~mask;
    -}
    -
    #define smp_mb__before_clear_bit() barrier()
    #define smp_mb__after_clear_bit() barrier()

    /**
    - * __change_bit - Toggle a bit in memory
    - * @nr: the bit to set
    - * @addr: the address to start counting from
    - *
    - * Unlike change_bit(), this function is non-atomic and may be reordered.
    - * If it's called on the same region of memory simultaneously, the effect
    - * may be that only one operation succeeds.
    - */
    -static __inline__ void __change_bit(int nr, volatile void * addr)
    -{
    - __u32 mask;
    - volatile __u32 *a = addr;
    -
    - a += (nr >> 5);
    - mask = (1 << (nr & 0x1F));
    - *a ^= mask;
    -}
    -
    -/**
    * change_bit - Toggle a bit in memory
    * @nr: Bit to clear
    * @addr: Address to start counting from
    @@ -221,28 +173,6 @@ static __inline__ int test_and_set_bit(i
    }

    /**
    - * __test_and_set_bit - Set a bit and return its old value
    - * @nr: Bit to set
    - * @addr: Address to count from
    - *
    - * This operation is non-atomic and can be reordered.
    - * If two examples of this operation race, one can appear to succeed
    - * but actually fail. You must protect multiple accesses with a lock.
    - */
    -static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
    -{
    - __u32 mask, oldbit;
    - volatile __u32 *a = addr;
    -
    - a += (nr >> 5);
    - mask = (1 << (nr & 0x1F));
    - oldbit = (*a & mask);
    - *a |= mask;
    -
    - return (oldbit != 0);
    -}
    -
    -/**
    * test_and_clear_bit - Clear a bit and return its old value
    * @nr: Bit to set
    * @addr: Address to count from
    @@ -280,42 +210,6 @@ static __inline__ int test_and_clear_bit
    }

    /**
    - * __test_and_clear_bit - Clear a bit and return its old value
    - * @nr: Bit to set
    - * @addr: Address to count from
    - *
    - * This operation is non-atomic and can be reordered.
    - * If two examples of this operation race, one can appear to succeed
    - * but actually fail. You must protect multiple accesses with a lock.
    - */
    -static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
    -{
    - __u32 mask, oldbit;
    - volatile __u32 *a = addr;
    -
    - a += (nr >> 5);
    - mask = (1 << (nr & 0x1F));
    - oldbit = (*a & mask);
    - *a &= ~mask;
    -
    - return (oldbit != 0);
    -}
    -
    -/* WARNING: non atomic and it can be reordered! */
    -static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
    -{
    - __u32 mask, oldbit;
    - volatile __u32 *a = addr;
    -
    - a += (nr >> 5);
    - mask = (1 << (nr & 0x1F));
    - oldbit = (*a & mask);
    - *a ^= mask;
    -
    - return (oldbit != 0);
    -}
    -
    -/**
    * test_and_change_bit - Change a bit and return its old value
    * @nr: Bit to set
    * @addr: Address to count from
    @@ -350,353 +244,26 @@ static __inline__ int test_and_change_bi
    return (oldbit != 0);
    }

    -/**
    - * test_bit - Determine whether a bit is set
    - * @nr: bit number to test
    - * @addr: Address to start counting from
    - */
    -static __inline__ int test_bit(int nr, const volatile void * addr)
    -{
    - __u32 mask;
    - const volatile __u32 *a = addr;
    -
    - a += (nr >> 5);
    - mask = (1 << (nr & 0x1F));
    -
    - return ((*a & mask) != 0);
    -}
    -
    -/**
    - * ffz - find first zero in word.
    - * @word: The word to search
    - *
    - * Undefined if no zero exists, so code should check against ~0UL first.
    - */
    -static __inline__ unsigned long ffz(unsigned long word)
    -{
    - int k;
    -
    - word = ~word;
    - k = 0;
    - if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
    - if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
    - if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
    - if (!(word & 0x00000003)) { k += 2; word >>= 2; }
    - if (!(word & 0x00000001)) { k += 1; }
    -
    - return k;
    -}
    -
    -/**
    - * find_first_zero_bit - find the first zero bit in a memory region
    - * @addr: The address to start the search at
    - * @size: The maximum size to search
    - *
    - * Returns the bit-number of the first zero bit, not the number of the byte
    - * containing a bit.
    - */
    -
    -#define find_first_zero_bit(addr, size) \
    - find_next_zero_bit((addr), (size), 0)
    -
    -/**
    - * find_next_zero_bit - find the first zero bit in a memory region
    - * @addr: The address to base the search on
    - * @offset: The bitnumber to start searching at
    - * @size: The maximum size to search
    - */
    -static __inline__ int find_next_zero_bit(const unsigned long *addr,
    - int size, int offset)
    -{
    - const unsigned long *p = addr + (offset >> 5);
    - unsigned long result = offset & ~31UL;
    - unsigned long tmp;
    -
    - if (offset >= size)
    - return size;
    - size -= result;
    - offset &= 31UL;
    - if (offset) {
    - tmp = *(p++);
    - tmp |= ~0UL >> (32-offset);
    - if (size < 32)
    - goto found_first;
    - if (~tmp)
    - goto found_middle;
    - size -= 32;
    - result += 32;
    - }
    - while (size & ~31UL) {
    - if (~(tmp = *(p++)))
    - goto found_middle;
    - result += 32;
    - size -= 32;
    - }
    - if (!size)
    - return result;
    - tmp = *p;
    -
    -found_first:
    - tmp |= ~0UL << size;
    -found_middle:
    - return result + ffz(tmp);
    -}
    -
    -/**
    - * __ffs - find first bit in word.
    - * @word: The word to search
    - *
    - * Undefined if no bit exists, so code should check against 0 first.
    - */
    -static __inline__ unsigned long __ffs(unsigned long word)
    -{
    - int k = 0;
    -
    - if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
    - if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
    - if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
    - if (!(word & 0x00000003)) { k += 2; word >>= 2; }
    - if (!(word & 0x00000001)) { k += 1;}
    -
    - return k;
    -}
    -
    -/*
    - * fls: find last bit set.
    - */
    -#define fls(x) generic_fls(x)
    -#define fls64(x) generic_fls64(x)
    +#include <asm-generic/bitops/non-atomic.h>
    +#include <asm-generic/bitops/ffz.h>
    +#include <asm-generic/bitops/__ffs.h>
    +#include <asm-generic/bitops/fls.h>
    +#include <asm-generic/bitops/fls64.h>

    #ifdef __KERNEL__

    -/*
    - * Every architecture must define this function. It's the fastest
    - * way of searching a 140-bit bitmap where the first 100 bits are
    - * unlikely to be set. It's guaranteed that at least one of the 140
    - * bits is cleared.
    - */
    -static inline int sched_find_first_bit(unsigned long *b)
    -{
    - if (unlikely(b[0]))
    - return __ffs(b[0]);
    - if (unlikely(b[1]))
    - return __ffs(b[1]) + 32;
    - if (unlikely(b[2]))
    - return __ffs(b[2]) + 64;
    - if (b[3])
    - return __ffs(b[3]) + 96;
    - return __ffs(b[4]) + 128;
    -}
    -
    -/**
    - * find_next_bit - find the first set bit in a memory region
    - * @addr: The address to base the search on
    - * @offset: The bitnumber to start searching at
    - * @size: The maximum size to search
    - */
    -static inline unsigned long find_next_bit(const unsigned long *addr,
    - unsigned long size, unsigned long offset)
    -{
    - unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
    - unsigned int result = offset & ~31UL;
    - unsigned int tmp;
    -
    - if (offset >= size)
    - return size;
    - size -= result;
    - offset &= 31UL;
    - if (offset) {
    - tmp = *p++;
    - tmp &= ~0UL << offset;
    - if (size < 32)
    - goto found_first;
    - if (tmp)
    - goto found_middle;
    - size -= 32;
    - result += 32;
    - }
    - while (size >= 32) {
    - if ((tmp = *p++) != 0)
    - goto found_middle;
    - result += 32;
    - size -= 32;
    - }
    - if (!size)
    - return result;
    - tmp = *p;
    -
    -found_first:
    - tmp &= ~0UL >> (32 - size);
    - if (tmp == 0UL) /* Are any bits set? */
    - return result + size; /* Nope. */
    -found_middle:
    - return result + __ffs(tmp);
    -}
    -
    -/**
    - * find_first_bit - find the first set bit in a memory region
    - * @addr: The address to start the search at
    - * @size: The maximum size to search
    - *
    - * Returns the bit-number of the first set bit, not the number of the byte
    - * containing a bit.
    - */
    -#define find_first_bit(addr, size) \
    - find_next_bit((addr), (size), 0)
    -
    -/**
    - * ffs - find first bit set
    - * @x: the word to search
    - *
    - * This is defined the same way as
    - * the libc and compiler builtin ffs routines, therefore
    - * differs in spirit from the above ffz (man ffs).
    - */
    -#define ffs(x) generic_ffs(x)
    -
    -/**
    - * hweightN - returns the hamming weight of a N-bit word
    - * @x: the word to weigh
    - *
    - * The Hamming Weight of a number is the total number of bits set in it.
    - */
    -
    -#define hweight32(x) generic_hweight32(x)
    -#define hweight16(x) generic_hweight16(x)
    -#define hweight8(x) generic_hweight8(x)
    +#include <asm-generic/bitops/sched.h>
    +#include <asm-generic/bitops/find.h>
    +#include <asm-generic/bitops/ffs.h>
    +#include <asm-generic/bitops/hweight.h>

    #endif /* __KERNEL__ */

    #ifdef __KERNEL__

    -/*
    - * ext2_XXXX function
    - * orig: include/asm-sh/bitops.h
    - */
    -
    -#ifdef __LITTLE_ENDIAN__
    -#define ext2_set_bit __test_and_set_bit
    -#define ext2_clear_bit __test_and_clear_bit
    -#define ext2_test_bit test_bit
    -#define ext2_find_first_zero_bit find_first_zero_bit
    -#define ext2_find_next_zero_bit find_next_zero_bit
    -#else
    -static inline int ext2_set_bit(int nr, volatile void * addr)
    -{
    - __u8 mask, oldbit;
    - volatile __u8 *a = addr;
    -
    - a += (nr >> 3);
    - mask = (1 << (nr & 0x07));
    - oldbit = (*a & mask);
    - *a |= mask;
    -
    - return (oldbit != 0);
    -}
    -
    -static inline int ext2_clear_bit(int nr, volatile void * addr)
    -{
    - __u8 mask, oldbit;
    - volatile __u8 *a = addr;
    -
    - a += (nr >> 3);
    - mask = (1 << (nr & 0x07));
    - oldbit = (*a & mask);
    - *a &= ~mask;
    -
    - return (oldbit != 0);
    -}
    -
    -static inline int ext2_test_bit(int nr, const volatile void * addr)
    -{
    - __u32 mask;
    - const volatile __u8 *a = addr;
    -
    - a += (nr >> 3);
    - mask = (1 << (nr & 0x07));
    -
    - return ((mask & *a) != 0);
    -}
    -
    -#define ext2_find_first_zero_bit(addr, size) \
    - ext2_find_next_zero_bit((addr), (size), 0)
    -
    -static inline unsigned long ext2_find_next_zero_bit(void *addr,
    - unsigned long size, unsigned long offset)
    -{
    - unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
    - unsigned long result = offset & ~31UL;
    - unsigned long tmp;
    -
    - if (offset >= size)
    - return size;
    - size -= result;
    - offset &= 31UL;
    - if(offset) {
    - /* We hold the little endian value in tmp, but then the
    - * shift is illegal. So we could keep a big endian value
    - * in tmp, like this:
    - *
    - * tmp = __swab32(*(p++));
    - * tmp |= ~0UL >> (32-offset);
    - *
    - * but this would decrease preformance, so we change the
    - * shift:
    - */
    - tmp = *(p++);
    - tmp |= __swab32(~0UL >> (32-offset));
    - if(size < 32)
    - goto found_first;
    - if(~tmp)
    - goto found_middle;
    - size -= 32;
    - result += 32;
    - }
    - while(size & ~31UL) {
    - if(~(tmp = *(p++)))
    - goto found_middle;
    - result += 32;
    - size -= 32;
    - }
    - if(!size)
    - return result;
    - tmp = *p;
    -
    -found_first:
    - /* tmp is little endian, so we would have to swab the shift,
    - * see above. But then we have to swab tmp below for ffz, so
    - * we might as well do this here.
    - */
    - return result + ffz(__swab32(tmp) | (~0UL << size));
    -found_middle:
    - return result + ffz(__swab32(tmp));
    -}
    -#endif
    -
    -#define ext2_set_bit_atomic(lock, nr, addr) \
    - ({ \
    - int ret; \
    - spin_lock(lock); \
    - ret = ext2_set_bit((nr), (addr)); \
    - spin_unlock(lock); \
    - ret; \
    - })
    -
    -#define ext2_clear_bit_atomic(lock, nr, addr) \
    - ({ \
    - int ret; \
    - spin_lock(lock); \
    - ret = ext2_clear_bit((nr), (addr)); \
    - spin_unlock(lock); \
    - ret; \
    - })
    -
    -/* Bitmap functions for the minix filesystem. */
    -#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
    -#define minix_set_bit(nr,addr) __set_bit(nr,addr)
    -#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
    -#define minix_test_bit(nr,addr) test_bit(nr,addr)
    -#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
    +#include <asm-generic/bitops/ext2-non-atomic.h>
    +#include <asm-generic/bitops/ext2-atomic.h>
    +#include <asm-generic/bitops/minix.h>

    #endif /* __KERNEL__ */

    --
    -
    To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
    the body of a message to majordomo@vger.kernel.org
    More majordomo info at http://vger.kernel.org/majordomo-info.html
    Please read the FAQ at http://www.tux.org/lkml/

    \
     
     \ /
      Last update: 2006-02-01 10:12    [W:0.049 / U:29.500 seconds]
    ©2003-2016 Jasper Spaans. hosted at Digital OceanAdvertise on this site