lkml.org 
[lkml]   [2001]   [Jul]   [5]   [last100]   RSS Feed
Views: [wrap][no wrap]   [headers]  [forward] 
 
Messages in this thread
/
Date
From
Subjectarch/i386/kernel/semaphore.c
Hi,

I patched semaphore.c to compile cleanly and without any warning when
using GCC 3.0.

Regards,
Erik
/*
* i386 semaphore implementation.
*
* (C) Copyright 1999 Linus Torvalds
*
* Portions Copyright 1999 Red Hat, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* rw semaphores implemented November 1999 by Benjamin LaHaise <bcrl@redhat.com>
*/
#include <linux/config.h>
#include <linux/sched.h>
#include <asm/semaphore.h>

/*
* Semaphores are implemented using a two-way counter:
* The "count" variable is decremented for each process
* that tries to acquire the semaphore, while the "sleeping"
* variable is a count of such acquires.
*
* Notably, the inline "up()" and "down()" functions can
* efficiently test if they need to do any extra work (up
* needs to do something only if count was negative before
* the increment operation.
*
* "sleeping" and the contention routine ordering is
* protected by the semaphore spinlock.
*
* Note that these functions are only called when there is
* contention on the lock, and as such all this is the
* "non-critical" part of the whole semaphore business. The
* critical part is the inline stuff in <asm/semaphore.h>
* where we want to avoid any extra jumps and calls.
*/

/*
* Logic:
* - only on a boundary condition do we need to care. When we go
* from a negative count to a non-negative, we wake people up.
* - when we go from a non-negative count to a negative do we
* (a) synchronize with the "sleeper" count and (b) make sure
* that we're on the wakeup list before we synchronize so that
* we cannot lose wakeup events.
*/

void __up(struct semaphore *sem)
{
wake_up(&sem->wait);
}

static spinlock_t semaphore_lock = SPIN_LOCK_UNLOCKED;

void __down(struct semaphore * sem)
{
struct task_struct *tsk = current;
DECLARE_WAITQUEUE(wait, tsk);
tsk->state = TASK_UNINTERRUPTIBLE;
add_wait_queue_exclusive(&sem->wait, &wait);

spin_lock_irq(&semaphore_lock);
sem->sleepers++;
for (;;) {
int sleepers = sem->sleepers;

/*
* Add "everybody else" into it. They aren't
* playing, because we own the spinlock.
*/
if (!atomic_add_negative(sleepers - 1, &sem->count)) {
sem->sleepers = 0;
break;
}
sem->sleepers = 1; /* us - see -1 above */
spin_unlock_irq(&semaphore_lock);

schedule();
tsk->state = TASK_UNINTERRUPTIBLE;
spin_lock_irq(&semaphore_lock);
}
spin_unlock_irq(&semaphore_lock);
remove_wait_queue(&sem->wait, &wait);
tsk->state = TASK_RUNNING;
wake_up(&sem->wait);
}

int __down_interruptible(struct semaphore * sem)
{
int retval = 0;
struct task_struct *tsk = current;
DECLARE_WAITQUEUE(wait, tsk);
tsk->state = TASK_INTERRUPTIBLE;
add_wait_queue_exclusive(&sem->wait, &wait);

spin_lock_irq(&semaphore_lock);
sem->sleepers ++;
for (;;) {
int sleepers = sem->sleepers;

/*
* With signals pending, this turns into
* the trylock failure case - we won't be
* sleeping, and we* can't get the lock as
* it has contention. Just correct the count
* and exit.
*/
if (signal_pending(current)) {
retval = -EINTR;
sem->sleepers = 0;
atomic_add(sleepers, &sem->count);
break;
}

/*
* Add "everybody else" into it. They aren't
* playing, because we own the spinlock. The
* "-1" is because we're still hoping to get
* the lock.
*/
if (!atomic_add_negative(sleepers - 1, &sem->count)) {
sem->sleepers = 0;
break;
}
sem->sleepers = 1; /* us - see -1 above */
spin_unlock_irq(&semaphore_lock);

schedule();
tsk->state = TASK_INTERRUPTIBLE;
spin_lock_irq(&semaphore_lock);
}
spin_unlock_irq(&semaphore_lock);
tsk->state = TASK_RUNNING;
remove_wait_queue(&sem->wait, &wait);
wake_up(&sem->wait);
return retval;
}

/*
* Trylock failed - make sure we correct for
* having decremented the count.
*
* We could have done the trylock with a
* single "cmpxchg" without failure cases,
* but then it wouldn't work on a 386.
*/
int __down_trylock(struct semaphore * sem)
{
int sleepers;
unsigned long flags;

spin_lock_irqsave(&semaphore_lock, flags);
sleepers = sem->sleepers + 1;
sem->sleepers = 0;

/*
* Add "everybody else" and us into it. They aren't
* playing, because we own the spinlock.
*/
if (!atomic_add_negative(sleepers, &sem->count))
wake_up(&sem->wait);

spin_unlock_irqrestore(&semaphore_lock, flags);
return 1;
}


/*
* The semaphore operations have a special calling sequence that
* allow us to do a simpler in-line version of them. These routines
* need to convert that sequence back into the C sequence when
* there is contention on the semaphore.
*
* %ecx contains the semaphore pointer on entry. Save the C-clobbered
* registers (%eax, %edx and %ecx) except %eax when used as a return
* value..
*/
asm(
".text\n"
".align 4\n"
".globl __down_failed\n"
"__down_failed:\n\t"
"pushl %eax\n\t"
"pushl %edx\n\t"
"pushl %ecx\n\t"
"call __down\n\t"
"popl %ecx\n\t"
"popl %edx\n\t"
"popl %eax\n\t"
"ret"
);

asm(
".text\n"
".align 4\n"
".globl __down_failed_interruptible\n"
"__down_failed_interruptible:\n\t"
"pushl %edx\n\t"
"pushl %ecx\n\t"
"call __down_interruptible\n\t"
"popl %ecx\n\t"
"popl %edx\n\t"
"ret"
);

asm(
".text\n"
".align 4\n"
".globl __down_failed_trylock\n"
"__down_failed_trylock:\n\t"
"pushl %edx\n\t"
"pushl %ecx\n\t"
"call __down_trylock\n\t"
"popl %ecx\n\t"
"popl %edx\n\t"
"ret"
);

asm(
".text\n"
".align 4\n"
".globl __up_wakeup\n"
"__up_wakeup:\n\t"
"pushl %eax\n\t"
"pushl %edx\n\t"
"pushl %ecx\n\t"
"call __up\n\t"
"popl %ecx\n\t"
"popl %edx\n\t"
"popl %eax\n\t"
"ret"
);

/*
* rw spinlock fallbacks
*/
#if defined(CONFIG_SMP)
asm(
" \
.align 4 \
.globl __write_lock_failed \
__write_lock_failed: \
" LOCK "addl $" RW_LOCK_BIAS_STR ",(%eax) \
1: cmpl $" RW_LOCK_BIAS_STR ",(%eax) \
jne 1b \
\
" LOCK "subl $" RW_LOCK_BIAS_STR ",(%eax) \
jnz __write_lock_failed \
ret \
\
\
.align 4 \
.globl __read_lock_failed \
__read_lock_failed: \
lock ; incl (%eax) \
1: cmpl $1,(%eax) \
js 1b \
\
lock ; decl (%eax) \
js __read_lock_failed \
ret \
"
);
#endif
\
 
 \ /
  Last update: 2005-03-22 12:56    [W:0.062 / U:0.300 seconds]
©2003-2020 Jasper Spaans|hosted at Digital Ocean and TransIP|Read the blog|Advertise on this site